人工神经网络的许多算法已在智能信息处理系统中获得广泛采用,尤为突出是是以下4种算法:ART网络、LVQ网络、Kohonen网络Hopfield网络,下面就具体介绍一下这这四种算法:
1.自适应谐振理论(ART)网络
自适应谐振理论(ART)网络具有不同的方案。一个ART-1网络含有两层一个输入层和一个输出层。这两层完全互连,该连接沿着正向(自底向上)和反馈(自顶向下)两个方向进行。
当ART-1网络在工作时,其训练是连续进行的,且包括下列算法步骤:
(1)对于所有输出神经元,如果一个输出神经元的全部警戒权值均置为1,则称为独立神经元,因为它不被指定表示任何模式类型。
(2)给出一个新的输入模式x。
(3)使所有的输出神经元能够参加激发竞争。
(4)从竞争神经元中找到获胜的输出神经元,即这个神经元的x·W值为最大;在开始训练时或不存在更好的输出神经元时,优胜神经元可能是个独立神经元。
(5)检查该输入模式x是否与获胜神经元的警戒矢量V足够相似。
(6)如果r≥p,即存在谐振,则转向步骤(7);否则,使获胜神经元暂时无力进一步竞争,并转向步骤(4),重复这一过程直至不存在更多的有能力的神经元为止。
2.学习矢量量化(LVQ)网络
学习矢量量化(LVQ)网络,它由三层神经元组成,即输入转换层、隐含层和输出层。该网络在输入层与隐含层之间为完全连接,而在隐含层与输出层之间为部分连接,每个输出神经元与隐含神经元的不同组相连接。
最简单的LVQ训练步骤如下:
(1)预置参考矢量初始权值。
(2)供给网络一个训练输入模式。
(3)计算输人模式与每个参考矢量间的Euclidean距离。
(4)更新最接近输入模式的参考矢量(即获胜隐含神经元的参考矢量)的权值。如果获胜隐含神经元以输入模式一样的类属于连接至输出神经元的缓冲器,那么参考矢量应更接近输入模式。否则,参考矢量就离开输人模式。
(5)转至步骤(2),以某个新的训练输入模式重复本过程,直至全部训练模式被正确地分类或者满足某个终止准则为止。
3.Kohonen网络
Kohonen网络或自组织特征映射网络含有两层,一个输入缓冲层用于接收输入模式,另一个为输出层,输出层的神经元一般按正则二维阵列排列,每个输出神经元连接至所有输入神经元。连接权值形成与已知输出神经元相连的参考矢量的分量。
训练一个Kohonen网络包含下列步骤:
(1)对所有输出神经元的参考矢量预置小的随机初值。
(2)供给网络一个训练输入模式。
(3)确定获胜的输出神经元,即参考矢量最接近输入模式的神经元。参考矢量与输入矢量间的Euclidean距离通常被用作距离测量。
(4)更新获胜神经元的参考矢量及其近邻参考矢量。这些参考矢量(被引至)更接近输入矢量。对于获胜参考矢量,其调整是最大的,而对于离得更远的神经元,减少调整个神经元邻域的大小随着训练的进行而相对减小,到训练结束,只有获胜神经元的参考矢量被调整。
4.Hopfield网络
Hopfield网络是一种典型的递归网络,这种网络通常只接受二进制输入(0或1)以及双极输入(+1或-1)。它含有一个单层神经元,每个神经元与所有其他神经元连接,形成递归结构。
以上是人工神经网络算法是什么的详细内容。更多信息请关注PHP中文网其他相关文章!

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...

Python3.6环境下加载Pickle文件报错:ModuleNotFoundError:Nomodulenamed...


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

记事本++7.3.1
好用且免费的代码编辑器

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

SublimeText3汉化版
中文版,非常好用