本篇文章给大家带来的内容是关于python中5个常用的内置高阶函数的介绍(附代码),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。
python内置常用高阶函数:
一、函数式编程
函数本身可以赋值给变量,赋值后变量为函数;
允许将函数本身作为参数传入另一个函数;
允许返回一个函数。
1、map()函数
是 Python 内置的高阶函数,它接收一个函数 f 和一个 list,
并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 list 并返回
def add(x): return x+x print(map(add,[1, 2, 3])) # Out:<map object at 0x00000239E833DE48> print(list(map(add,[1, 2, 3]))) # Out:[2, 4, 6]
2、reduce()函数
reduce()函数也是Python内置的一个高阶函数。
reduce()函数接收的参数和 map()类似,一个函数 f,一个list,但行为和 map()不同,reduce()传入的函数f必须接收两个参数,
reduce()对list的每个元素反复调用函数f,并返回最终结果值。
在 Python3 中,reduce() 函数已经被从全局名字空间里移除了,它现在被放置在 functools 模块里,如果想要使用它,
则需要通过引入 functools 模块来调用 reduce() 函数:
from functools import reduce def prod(x, y): return x*y print(reduce(prod, [2, 4, 5, 7, 12])) # Out:3360 # 2*4*5*7*12 # reduce()还可以接收第3个可选参数,作为计算的初始值。如果把初始值设为100 print(reduce(prod, [2, 4, 5, 7, 12], 100)) # Out:336000 # 2*4*5*7*12*100
3、filter()函数
是 Python 内置的另一个有用的高阶函数,filter()函数接收一个函数 f 和一个list,
这个函数f的作用是对每个元素进行判断,返回 True或 False,filter()根据判断结果自动过滤掉不符合条件的元素,
返回由符合条件元素组成的新list。
import math def is_sqr(x): return math.sqrt(x) == int(math.sqrt(x)) print(list(filter(is_sqr, range(1, 101)))) # Out:[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
4、sorted() 函数
对所有可迭代的对象进行排序操作。
sort 与 sorted 区别:
sort 是应用在 list 上的方法,sorted 可以对所有可迭代的对象进行排序操作。
list 的 sort 方法返回的是对已经存在的列表进行操作,而内建函数 sorted 方法返回的是一个新的 list,而不是在原来的基础上进行的操作。
sorted(iterable, key=None, reverse=False)
iterable -- 可迭代对象。
key -- 主要是用来进行比较的元素,只有一个参数,具体的函数的参数就是取自于可迭代对象中,指定可迭代对象中的一个元素来进行排序。
reverse -- 排序规则,reverse = True 降序 , reverse = False 升序(默认)。
返回重新排序的列表
print(sorted([5, 2, 3, 1, 4])) # Out:[1, 2, 3, 4, 5] print(sorted({1:'D', 2:'B', 3:'B', 4:'E', 5: 'A'})) # Out:[1, 2, 3, 4, 5]
利用key进行倒序排序
example_list = [5, 0, 6, 1, 2, 7, 3, 4] result_list = sorted(example_list, key=lambda x: x*-1) print(result_list)
要进行反向排序,也可以通过传入第三个参数 reverse=True:
example_list = [5, 0, 6, 1, 2, 7, 3, 4] print(sorted(example_list, reverse=True)) # Out:[7, 6, 5, 4, 3, 2, 1, 0]
5、Python的函数不但可以返回int、str、list、dict等数据类型,还可以返回函数!
请注意区分返回函数和返回值:
def my_abs(): return abs # 返回函数,返回函数可以把一些计算延迟 def my_abs2(x): return abs(x) # 返回函数调用的结果,返回值是一个数值
def calc_prod(lst): def lazy_prod(): prod = 1 for i in lst: prod = prod*i return prod return lazy_prod f = calc_prod([1, 2, 3, 4]) print(f()) # Out:24
5.1、为什么定义lazy_prod()函数和返回函数cal_prod()?
python支持返回函数的基本语法
def f(): print('call f()...') # 定义函数g: def g(): print('call g()...') # 返回函数g: return g
只返回函数的作用:
返回函数可以把一些计算延迟执行。例如,如果定义一个普通的求和函数:
def calc_sum(lst): return sum(lst) print(calc_sum([1,2,3,4])) # Out:10 def calc_sum(lst): def lazy_sum(): return sum(lst) return lazy_sum f = calc_sum([1, 2, 3, 4]) print(f) # 代码并没有对函数进行执行计算出结果,而是返回函数,所以打印出来的是类型 #Out: <function calc_sum.<locals>.lazy_sum at 0x000001FF43462E18> print(f()) # 对返回的函数进行调用时,才计算出结果 # Out:10
以上是python中5个常用的内置高阶函数的介绍(附代码)的详细内容。更多信息请关注PHP中文网其他相关文章!

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python和C 在内存管理和控制方面的差异显着。 1.Python使用自动内存管理,基于引用计数和垃圾回收,简化了程序员的工作。 2.C 则要求手动管理内存,提供更多控制权但增加了复杂性和出错风险。选择哪种语言应基于项目需求和团队技术栈。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

选择Python还是C 取决于项目需求:1)Python适合快速开发、数据科学和脚本编写,因其简洁语法和丰富库;2)C 适用于需要高性能和底层控制的场景,如系统编程和游戏开发,因其编译型和手动内存管理。

Python在数据科学和机器学习中的应用广泛,主要依赖于其简洁性和强大的库生态系统。1)Pandas用于数据处理和分析,2)Numpy提供高效的数值计算,3)Scikit-learn用于机器学习模型构建和优化,这些库让Python成为数据科学和机器学习的理想工具。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

Dreamweaver Mac版
视觉化网页开发工具

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)