搜索
首页后端开发Python教程python中5个常用的内置高阶函数的介绍(附代码)

本篇文章给大家带来的内容是关于python中5个常用的内置高阶函数的介绍(附代码),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。

python内置常用高阶函数:

一、函数式编程

函数本身可以赋值给变量,赋值后变量为函数;

允许将函数本身作为参数传入另一个函数;

允许返回一个函数。

1、map()函数

是 Python 内置的高阶函数,它接收一个函数 f 和一个 list,

并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 list 并返回

def add(x):
    return x+x

print(map(add,[1, 2, 3]))
# Out:<map object at 0x00000239E833DE48>
print(list(map(add,[1, 2, 3])))
# Out:[2, 4, 6]

2、reduce()函数

reduce()函数也是Python内置的一个高阶函数。

reduce()函数接收的参数和 map()类似,一个函数 f,一个list,但行为和 map()不同,reduce()传入的函数f必须接收两个参数,

reduce()对list的每个元素反复调用函数f,并返回最终结果值。

在 Python3 中,reduce() 函数已经被从全局名字空间里移除了,它现在被放置在 functools 模块里,如果想要使用它,

则需要通过引入 functools 模块来调用 reduce() 函数:

from functools import reduce


def prod(x, y):
    return x*y


print(reduce(prod, [2, 4, 5, 7, 12]))
# Out:3360  # 2*4*5*7*12
# reduce()还可以接收第3个可选参数,作为计算的初始值。如果把初始值设为100
print(reduce(prod, [2, 4, 5, 7, 12], 100))
# Out:336000    # 2*4*5*7*12*100

3、filter()函数

是 Python 内置的另一个有用的高阶函数,filter()函数接收一个函数 f 和一个list,

这个函数f的作用是对每个元素进行判断,返回 True或 False,filter()根据判断结果自动过滤掉不符合条件的元素,

返回由符合条件元素组成的新list。

import math

def is_sqr(x):
    return math.sqrt(x) == int(math.sqrt(x))

print(list(filter(is_sqr, range(1, 101))))
# Out:[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

4、sorted() 函数

对所有可迭代的对象进行排序操作。

sort 与 sorted 区别:

sort 是应用在 list 上的方法,sorted 可以对所有可迭代的对象进行排序操作。

list 的 sort 方法返回的是对已经存在的列表进行操作,而内建函数 sorted 方法返回的是一个新的 list,而不是在原来的基础上进行的操作。

sorted(iterable, key=None, reverse=False)

iterable -- 可迭代对象。

key -- 主要是用来进行比较的元素,只有一个参数,具体的函数的参数就是取自于可迭代对象中,指定可迭代对象中的一个元素来进行排序。

reverse -- 排序规则,reverse = True 降序 , reverse = False 升序(默认)。

返回重新排序的列表

print(sorted([5, 2, 3, 1, 4]))
# Out:[1, 2, 3, 4, 5]
print(sorted({1:&#39;D&#39;, 2:&#39;B&#39;, 3:&#39;B&#39;, 4:&#39;E&#39;, 5: &#39;A&#39;}))
# Out:[1, 2, 3, 4, 5]


利用key进行倒序排序

example_list = [5, 0, 6, 1, 2, 7, 3, 4]
result_list = sorted(example_list, key=lambda x: x*-1)
print(result_list)

要进行反向排序,也可以通过传入第三个参数 reverse=True:

example_list = [5, 0, 6, 1, 2, 7, 3, 4]
print(sorted(example_list, reverse=True))
# Out:[7, 6, 5, 4, 3, 2, 1, 0]

5、Python的函数不但可以返回int、str、list、dict等数据类型,还可以返回函数!

请注意区分返回函数和返回值:

def my_abs():
    return abs  # 返回函数,返回函数可以把一些计算延迟

def my_abs2(x):
    return abs(x)   # 返回函数调用的结果,返回值是一个数值
def calc_prod(lst):
    def lazy_prod():
        prod = 1
        for i in lst:
            prod = prod*i
        return prod
    return lazy_prod
f = calc_prod([1, 2, 3, 4])
print(f())
# Out:24

5.1、为什么定义lazy_prod()函数和返回函数cal_prod()?

python支持返回函数的基本语法

def f():
    print(&#39;call f()...&#39;)
    # 定义函数g:
    def g():
        print(&#39;call g()...&#39;)
    # 返回函数g:
    return g

只返回函数的作用:

返回函数可以把一些计算延迟执行。例如,如果定义一个普通的求和函数:

def calc_sum(lst):
    return sum(lst)
print(calc_sum([1,2,3,4]))
# Out:10

def calc_sum(lst):
    def lazy_sum():
        return sum(lst)
    return lazy_sum

f = calc_sum([1, 2, 3, 4])
print(f)    # 代码并没有对函数进行执行计算出结果,而是返回函数,所以打印出来的是类型
#Out: <function calc_sum.<locals>.lazy_sum at 0x000001FF43462E18>
print(f())      # 对返回的函数进行调用时,才计算出结果
# Out:10

以上是python中5个常用的内置高阶函数的介绍(附代码)的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:segmentfault。如有侵权,请联系admin@php.cn删除
Python与C:学习曲线和易用性Python与C:学习曲线和易用性Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python vs. C:内存管理和控制Python vs. C:内存管理和控制Apr 19, 2025 am 12:17 AM

Python和C 在内存管理和控制方面的差异显着。 1.Python使用自动内存管理,基于引用计数和垃圾回收,简化了程序员的工作。 2.C 则要求手动管理内存,提供更多控制权但增加了复杂性和出错风险。选择哪种语言应基于项目需求和团队技术栈。

科学计算的Python:详细的外观科学计算的Python:详细的外观Apr 19, 2025 am 12:15 AM

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python和C:找到合适的工具Python和C:找到合适的工具Apr 19, 2025 am 12:04 AM

选择Python还是C 取决于项目需求:1)Python适合快速开发、数据科学和脚本编写,因其简洁语法和丰富库;2)C 适用于需要高性能和底层控制的场景,如系统编程和游戏开发,因其编译型和手动内存管理。

数据科学和机器学习的Python数据科学和机器学习的PythonApr 19, 2025 am 12:02 AM

Python在数据科学和机器学习中的应用广泛,主要依赖于其简洁性和强大的库生态系统。1)Pandas用于数据处理和分析,2)Numpy提供高效的数值计算,3)Scikit-learn用于机器学习模型构建和优化,这些库让Python成为数据科学和机器学习的理想工具。

学习Python:2小时的每日学习是否足够?学习Python:2小时的每日学习是否足够?Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Web开发的Python:关键应用程序Web开发的Python:关键应用程序Apr 18, 2025 am 12:20 AM

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

Python vs.C:探索性能和效率Python vs.C:探索性能和效率Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)