本篇文章给大家带来的内容是关于Python中数据预处理(代码),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。
1、导入标准库import numpy as np import matplotlib.pyplot as plt import pandas as pd
2、导入数据集
dataset = pd.read_csv('data (1).csv') # read_csv:读取csv文件 #创建一个包含所有自变量的矩阵,及因变量的向量 #iloc表示选取数据集的某行某列;逗号之前的表示行,之后的表示列;冒号表示选取全部,没有冒号,则表示选取第几列;values表示选取数据集里的数据。 X = dataset.iloc[:, :-1].values # 选取数据,不选取最后一列。 y = dataset.iloc[:, 3].values # 选取数据,选取每行的第3列数据
3、缺失数据
from sklearn.preprocessing import Imputer #进行数据挖掘及数据分析的标准库,Imputer缺失数据的处理 #Imputer中的参数:missing_values 缺失数据,定义怎样辨认确实数据,默认值:nan ;strategy 策略,补缺值方式 : mean-平均值 , median-中值 , most_frequent-出现次数最多的数 ; axis =0取列 =1取行 imputer = Imputer(missing_values = 'NaN', strategy = 'mean', axis = 0) imputer = imputer.fit(X[:, 1:3])#拟合fit X[:, 1:3] = imputer.transform(X[:, 1:3])4、分类数据
from sklearn.preprocessing import LabelEncoder,OneHotEncoder labelencoder_X=LabelEncoder() X[:,0]=labelencoder_X.fit_transform(X[:,0]) onehotencoder=OneHotEncoder(categorical_features=[0]) X=onehotencoder.fit_transform(X).toarray() #因为Purchased是因变量,Python里面的函数可以将其识别为分类数据,所以只需要LabelEncoder转换为分类数字 labelencoder_y=LabelEncoder() y=labelencoder_y.fit_transform(y)
5、将数据集分为训练集和测试集
from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=0) #X_train(训练集的字变量),X_test(测试集的字变量),y_train(训练集的因变量),y_test(训练集的因变量) #训练集所占的比重0.2~0.25,某些情况也可分配1/3的数据给训练集;train_size训练集所占的比重 #random_state决定随机数生成的方式,随机的将数据分配给训练集和测试集;random_state相同时会得到相同的训练集和测试集6、特征缩放
#特征缩放(两种方式:一:Standardisation(标准化);二:Normalisation(正常化)) from sklearn.preprocessing import StandardScaler sc_X=StandardScaler() X_train=sc_X.fit_transform(X_train)#拟合,对X_train进行缩放 X_test=sc_X.transform(X_test)#sc_X已经被拟合好了,所以对X_test进行缩放时,直接转换X_test
7、数据预处理模板
(1)导入标准库
(2)导入数据集
(3)缺失和分类很少遇到
(4)将数据集分割为训练集和测试集
(5)特征缩放,大部分情况下不需要,但是某些情况需要特征缩放
以上是Python中数据预处理(代码)的详细内容。更多信息请关注PHP中文网其他相关文章!

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...

Python3.6环境下加载Pickle文件报错:ModuleNotFoundError:Nomodulenamed...


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

禅工作室 13.0.1
功能强大的PHP集成开发环境