本篇文章给大家带来的内容是关于微信小程序python中yield的用法介绍(附代码),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。
首先,如果你还没有对yield有个初步分认识,那么你先把yield看做“return”,这个是直观的,它首先是个return,普通的return是什么意思,就是在程序中返回某个值,返回之后程序就不再往下运行了。看做return之后再把它看做一个是生成器(generator)的一部分(带yield的函数才是真正的迭代器),好了,如果你对这些不明白的话,那先把yield看做return,然后直接看下面的程序,你就会明白yield的全部意思了:
def foo(): print("starting...") while True: res = yield 4 print("res:",res) g = foo() print(next(g)) print("*"*20) print(next(g))
就这么简单的几行代码就让你明白什么是yield,代码的输出这个:
starting... 4 ******************** res: None 4
我直接解释代码运行顺序,相当于代码单步调试:
1.程序开始执行以后,因为foo函数中有yield关键字,所以foo函数并不会真的执行,而是先得到一个生成器g(相当于一个对象)
2.直到调用next方法,foo函数正式开始执行,先执行foo函数中的print方法,然后进入while循环
3.程序遇到yield关键字,然后把yield想想成return,return了一个4之后,程序停止,并没有执行赋值给res操作,此时next(g)语句执行完成,所以输出的前两行(第一个是while上面的print的结果,第二个是return出的结果)是执行print(next(g))的结果,
4.程序执行print(""20),输出20个*
5.又开始执行下面的print(next(g)),这个时候和上面那个差不多,不过不同的是,这个时候是从刚才那个next程序停止的地方开始执行的,也就是要执行res的赋值操作,这时候要注意,这个时候赋值操作的右边是没有值的(因为刚才那个是return出去了,并没有给赋值操作的左边传参数),所以这个时候res赋值是None,所以接着下面的输出就是res:None,
6.程序会继续在while里执行,又一次碰到yield,这个时候同样return 出4,然后程序停止,print函数输出的4就是这次return出的4.
到这里你可能就明白yield和return的关系和区别了,带yield的函数是一个生成器,而不是一个函数了,这个生成器有一个函数就是next函数,next就相当于“下一步”生成哪个数,这一次的next开始的地方是接着上一次的next停止的地方执行的,所以调用next的时候,生成器并不会从foo函数的开始执行,只是接着上一步停止的地方开始,然后遇到yield后,return出要生成的数,此步就结束。
def foo(): print("starting...") while True: res = yield 4 print("res:",res) g = foo() print(next(g)) print("*"*20) print(g.send(7))
再看一个这个生成器的send函数的例子,这个例子就把上面那个例子的最后一行换掉了,输出结果:
starting... 4 ******************** res: 7 4
先大致说一下send函数的概念:此时你应该注意到上面那个的紫色的字,还有上面那个res的值为什么是None,这个变成了7,到底为什么,这是因为,send是发送一个参数给res的,因为上面讲到,return的时候,并没有把4赋值给res,下次执行的时候只好继续执行赋值操作,只好赋值为None了,而如果用send的话,开始执行的时候,先接着上一次(return 4之后)执行,先把7赋值给了res,然后执行next的作用,遇见下一回的yield,return出结果后结束。
5.程序执行g.send(7),程序会从yield关键字那一行继续向下运行,send会把7这个值赋值给res变量
6.由于send方法中包含next()方法,所以程序会继续向下运行执行print方法,然后再次进入while循环
7.程序执行再次遇到yield关键字,yield会返回后面的值后,程序再次暂停,直到再次调用next方法或send方法。
这就结束了,说一下,为什么用这个生成器,是因为如果用List的话,会占用更大的空间,比如说取0,1,2,3,4,5,6............1000
你可能会这样:
for n in range(1000): a=n
这个时候range(1000)就默认生成一个含有1000个数的list了,所以很占内存。
这个时候你可以用刚才的yield组合成生成器进行实现,也可以用xrange(1000)这个生成器实现
yield组合:
def foo(num): print("starting...") while num<10: num=num+1 yield num for n in foo(0): print(n)
输出:
starting... 1 2 3 4 5 6 7 8 9 10
xrange(1000):
for n in xrange(1000): a=n
其中要注意的是python3时已经没有xrange()了,在python3中,range()就是xrange()了,你可以在python3中查看range()的类型,它已经是个ed9aec11fd3590ae0219e26cabed6d60了,而不是一个list了,毕竟这个是需要优化的。
以上是python中yield的用法介绍(附代码)的详细内容。更多信息请关注PHP中文网其他相关文章!

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,内存效率段

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero

Inpython,一个“列表” isaversatile,mutableSequencethatCanholdMixedDatateTypes,而“阵列” isamorememory-效率,均质sepersequeSequeSequeReDencErequiringElements.1)

pythonlistsandArraysareBothable.1)列表Sareflexibleandsupportereceneousdatabutarelessmory-Memory-Empefficity.2)ArraysareMoremoremoremoreMemoremorememorememorememoremorememogeneSdatabutlesserversEversementime,defteringcorcttypecrecttypececeDepeceDyusagetoagetoavoavoiDerrors。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

选择Python还是C 取决于项目需求:1)如果需要快速开发、数据处理和原型设计,选择Python;2)如果需要高性能、低延迟和接近硬件的控制,选择C 。

通过每天投入2小时的Python学习,可以有效提升编程技能。1.学习新知识:阅读文档或观看教程。2.实践:编写代码和完成练习。3.复习:巩固所学内容。4.项目实践:应用所学于实际项目中。这样的结构化学习计划能帮助你系统掌握Python并实现职业目标。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

Atom编辑器mac版下载
最流行的的开源编辑器

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

禅工作室 13.0.1
功能强大的PHP集成开发环境

WebStorm Mac版
好用的JavaScript开发工具