本篇文章给大家带来的内容是关于Python线程中定位与销毁的详细介绍(附示例),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。
开工前我就觉得有什么不太对劲,感觉要背锅。这可不,上班第三天就捅锅了。
我们有个了不起的后台程序,可以动态加载模块,并以线程方式运行,通过这种形式实现插件的功能。而模块更新时候,后台程序自身不会退出,只会将模块对应的线程关闭、更新代码再启动,6 得不行。
于是乎我就写了个模块准备大展身手,结果忘记写退出函数了,导致每次更新模块都新创建一个线程,除非重启那个程序,否则那些线程就一直苟活着。
这可不行啊,得想个办法清理呀,要不然怕是要炸了。
那么怎么清理呢?我能想到的就是两步走:
找出需要清理的线程号 tid;
销毁它们;
找出线程ID
和平时的故障排查相似,先通过 ps 命令看看目标进程的线程情况,因为已经是 setName 设置过线程名,所以正常来说应该是看到对应的线程的。 直接用下面代码来模拟这个线程:
Python 版本的多线程
#coding: utf8 import threading import os import time def tt(): info = threading.currentThread() while True: print 'pid: ', os.getpid() print info.name, info.ident time.sleep(3) t1 = threading.Thread(target=tt) t1.setName('OOOOOPPPPP') t1.setDaemon(True) t1.start() t2 = threading.Thread(target=tt) t2.setName('EEEEEEEEE') t2.setDaemon(True) t2.start() t1.join() t2.join()
输出:
root@10-46-33-56:~# python t.py pid: 5613 OOOOOPPPPP 139693508122368 pid: 5613 EEEEEEEEE 139693497632512 ...
可以看到在 Python 里面输出的线程名就是我们设置的那样,然而 Ps 的结果却是令我怀疑人生:
root@10-46-33-56:~# ps -Tp 5613 PID SPID TTY TIME CMD 5613 5613 pts/2 00:00:00 python 5613 5614 pts/2 00:00:00 python 5613 5615 pts/2 00:00:00 python
正常来说不该是这样呀,我有点迷了,难道我一直都是记错了?用别的语言版本的多线程来测试下:
C 版本的多线程
#include<stdio.h> #include<sys/syscall.h> #include<sys/prctl.h> #include<pthread.h> void *test(void *name) { pid_t pid, tid; pid = getpid(); tid = syscall(__NR_gettid); char *tname = (char *)name; // 设置线程名字 prctl(PR_SET_NAME, tname); while(1) { printf("pid: %d, thread_id: %u, t_name: %s\n", pid, tid, tname); sleep(3); } } int main() { pthread_t t1, t2; void *ret; pthread_create(&t1, NULL, test, (void *)"Love_test_1"); pthread_create(&t2, NULL, test, (void *)"Love_test_2"); pthread_join(t1, &ret); pthread_join(t2, &ret); }
输出:
root@10-46-33-56:~# gcc t.c -lpthread && ./a.out pid: 5575, thread_id: 5577, t_name: Love_test_2 pid: 5575, thread_id: 5576, t_name: Love_test_1 pid: 5575, thread_id: 5577, t_name: Love_test_2 pid: 5575, thread_id: 5576, t_name: Love_test_1 ...
用 PS 命令再次验证:
root@10-46-33-56:~# ps -Tp 5575 PID SPID TTY TIME CMD 5575 5575 pts/2 00:00:00 a.out 5575 5576 pts/2 00:00:00 Love_test_1 5575 5577 pts/2 00:00:00 Love_test_2
这个才是正确嘛,线程名确实是可以通过 Ps 看出来的嘛!
不过为啥 Python 那个看不到呢?既然是通过 setName
设置线程名的,那就看看定义咯:
[threading.py] class Thread(_Verbose): ... @property def name(self): """A string used for identification purposes only. It has no semantics. Multiple threads may be given the same name. The initial name is set by the constructor. """ assert self.__initialized, "Thread.__init__() not called" return self.__name @name.setter def name(self, name): assert self.__initialized, "Thread.__init__() not called" self.__name = str(name) def setName(self, name): self.name = name ...
看到这里其实只是在 Thread
对象的属性设置了而已,并没有动到根本,那肯定就是看不到咯~
这样看起来,我们已经没办法通过 ps
或者 /proc/
这类手段在外部搜索 python 线程名了,所以我们只能在 Python 内部来解决。
于是问题就变成了,怎样在 Python 内部拿到所有正在运行的线程呢?
threading.enumerate
可以完美解决这个问题!Why?
Because 在下面这个函数的 doc 里面说得很清楚了,返回所有活跃的线程对象,不包括终止和未启动的。
[threading.py] def enumerate(): """Return a list of all Thread objects currently alive. The list includes daemonic threads, dummy thread objects created by current_thread(), and the main thread. It excludes terminated threads and threads that have not yet been started. """ with _active_limbo_lock: return _active.values() + _limbo.values()
因为拿到的是 Thread 的对象,所以我们通过这个能到该线程相关的信息!
请看完整代码示例:
#coding: utf8 import threading import os import time def get_thread(): pid = os.getpid() while True: ts = threading.enumerate() print '------- Running threads On Pid: %d -------' % pid for t in ts: print t.name, t.ident print time.sleep(1) def tt(): info = threading.currentThread() pid = os.getpid() while True: print 'pid: {}, tid: {}, tname: {}'.format(pid, info.name, info.ident) time.sleep(3) return t1 = threading.Thread(target=tt) t1.setName('Thread-test1') t1.setDaemon(True) t1.start() t2 = threading.Thread(target=tt) t2.setName('Thread-test2') t2.setDaemon(True) t2.start() t3 = threading.Thread(target=get_thread) t3.setName('Checker') t3.setDaemon(True) t3.start() t1.join() t2.join() t3.join()
输出:
root@10-46-33-56:~# python t_show.py pid: 6258, tid: Thread-test1, tname: 139907597162240 pid: 6258, tid: Thread-test2, tname: 139907586672384 ------- Running threads On Pid: 6258 ------- MainThread 139907616806656 Thread-test1 139907597162240 Checker 139907576182528 Thread-test2 139907586672384 ------- Running threads On Pid: 6258 ------- MainThread 139907616806656 Thread-test1 139907597162240 Checker 139907576182528 Thread-test2 139907586672384 ------- Running threads On Pid: 6258 ------- MainThread 139907616806656 Thread-test1 139907597162240 Checker 139907576182528 Thread-test2 139907586672384 ------- Running threads On Pid: 6258 ------- MainThread 139907616806656 Checker 139907576182528 ...
代码看起来有点长,但是逻辑相当简单,Thread-test1
和 Thread-test2
都是打印出当前的 pid、线程 id 和 线程名字,然后 3s 后退出,这个是想模拟线程正常退出。
而 Checker
线程则是每秒通过 threading.enumerate
输出当前进程内所有活跃的线程。
可以明显看到一开始是可以看到 Thread-test1
和 Thread-test2
的信息,当它俩退出之后就只剩下 MainThread
和 Checker
自身而已了。
销毁指定线程
既然能拿到名字和线程 id,那我们也就能干掉指定的线程了!
假设现在 Thread-test2
已经黑化,发疯了,我们需要制止它,那我们就可以通过这种方式解决了:
在上面的代码基础上,增加和补上下列代码:
def _async_raise(tid, exctype): """raises the exception, performs cleanup if needed""" tid = ctypes.c_long(tid) if not inspect.isclass(exctype): exctype = type(exctype) res = ctypes.pythonapi.PyThreadState_SetAsyncExc(tid, ctypes.py_object(exctype)) if res == 0: raise ValueError("invalid thread id") elif res != 1: ctypes.pythonapi.PyThreadState_SetAsyncExc(tid, None) raise SystemError("PyThreadState_SetAsyncExc failed") def stop_thread(thread): _async_raise(thread.ident, SystemExit) def get_thread(): pid = os.getpid() while True: ts = threading.enumerate() print '------- Running threads On Pid: %d -------' % pid for t in ts: print t.name, t.ident, t.is_alive() if t.name == 'Thread-test2': print 'I am go dying! Please take care of yourself and drink more hot water!' stop_thread(t) print time.sleep(1)
输出
root@10-46-33-56:~# python t_show.py pid: 6362, tid: 139901682108160, tname: Thread-test1 pid: 6362, tid: 139901671618304, tname: Thread-test2 ------- Running threads On Pid: 6362 ------- MainThread 139901706389248 True Thread-test1 139901682108160 True Checker 139901661128448 True Thread-test2 139901671618304 True Thread-test2: I am go dying. Please take care of yourself and drink more hot water! ------- Running threads On Pid: 6362 ------- MainThread 139901706389248 True Thread-test1 139901682108160 True Checker 139901661128448 True Thread-test2 139901671618304 True Thread-test2: I am go dying. Please take care of yourself and drink more hot water! pid: 6362, tid: 139901682108160, tname: Thread-test1 ------- Running threads On Pid: 6362 ------- MainThread 139901706389248 True Thread-test1 139901682108160 True Checker 139901661128448 True // Thread-test2 已经不在了
一顿操作下来,虽然我们这样对待 Thread-test2
,但它还是关心着我们:多喝热水,
PS: 热水虽好,八杯足矣,请勿贪杯哦。
书回正传,上述的方法是极为粗暴的,为什么这么说呢?
因为它的原理是:利用 Python 内置的 API,触发指定线程的异常,让其可以自动退出;
万不得已真不要用这种方法,有一定概率触发不可描述的问题。切记!别问我为什么会知道...
为什么停止线程这么难
多线程本身设计就是在进程下的协作并发,是调度的最小单元,线程间分食着进程的资源,所以会有许多锁机制和状态控制。
如果使用强制手段干掉线程,那么很大几率出现意想不到的bug。 而且最重要的锁资源释放可能也会出现意想不到问题。
我们甚至也无法通过信号杀死进程那样直接杀线程,因为 kill 只有对付进程才能达到我们的预期,而对付线程明显不可以,不管杀哪个线程,整个进程都会退出!
而因为有 GIL,使得很多童鞋都觉得 Python 的线程是Python 自行实现出来的,并非实际存在,Python 应该可以直接销毁吧?
然而事实上 Python 的线程都是货真价实的线程!
什么意思呢?Python 的线程是操作系统通过 pthread 创建的原生线程。Python 只是通过 GIL 来约束这些线程,来决定什么时候开始调度,比方说运行了多少个指令就交出 GIL,至于谁夺得花魁,得听操作系统的。
如果是单纯的线程,其实系统是有办法终止的,比如: pthread_exit
,pthread_kill
或 pthread_cancel
, 详情可看:https://www.cnblogs.com/Creat...
很可惜的是: Python 层面并没有这些方法的封装!我的天,好气!可能人家觉得,线程就该温柔对待吧。
如何温柔退出线程
想要温柔退出线程,其实差不多就是一句废话了~
要么运行完退出,要么设置标志位,时常检查标记位,该退出的就退出咯。
扩展
《如何正确的终止正在运行的子线程》:https://www.cnblogs.com/Creat...
《不要粗暴的销毁python线程》:http://xiaorui.cc/2017/02/22/...
欢迎各位大神指点交流, QQ讨论群: 258498217
转载请注明来源: https://segmentfault.com/a/11...
3 天前发布
Python:线程之定位与销毁
c
linux
python
266 次阅读 · 读完需要 30 分钟
8
背景
开工前我就觉得有什么不太对劲,感觉要背锅。这可不,上班第三天就捅锅了。
我们有个了不起的后台程序,可以动态加载模块,并以线程方式运行,通过这种形式实现插件的功能。而模块更新时候,后台程序自身不会退出,只会将模块对应的线程关闭、更新代码再启动,6 得不行。
于是乎我就写了个模块准备大展身手,结果忘记写退出函数了,导致每次更新模块都新创建一个线程,除非重启那个程序,否则那些线程就一直苟活着。
这可不行啊,得想个办法清理呀,要不然怕是要炸了。
那么怎么清理呢?我能想到的就是两步走:
找出需要清理的线程号 tid;
销毁它们;
找出线程ID
和平时的故障排查相似,先通过 ps 命令看看目标进程的线程情况,因为已经是 setName 设置过线程名,所以正常来说应该是看到对应的线程的。 直接用下面代码来模拟这个线程:
Python 版本的多线程
#coding: utf8 import threading import os import time def tt(): info = threading.currentThread() while True: print 'pid: ', os.getpid() print info.name, info.ident time.sleep(3) t1 = threading.Thread(target=tt) t1.setName('OOOOOPPPPP') t1.setDaemon(True) t1.start() t2 = threading.Thread(target=tt) t2.setName('EEEEEEEEE') t2.setDaemon(True) t2.start() t1.join() t2.join()
输出:
root@10-46-33-56:~# python t.py pid: 5613 OOOOOPPPPP 139693508122368 pid: 5613 EEEEEEEEE 139693497632512 ...
可以看到在 Python 里面输出的线程名就是我们设置的那样,然而 Ps 的结果却是令我怀疑人生:
root@10-46-33-56:~# ps -Tp 5613 PID SPID TTY TIME CMD 5613 5613 pts/2 00:00:00 python 5613 5614 pts/2 00:00:00 python 5613 5615 pts/2 00:00:00 python
正常来说不该是这样呀,我有点迷了,难道我一直都是记错了?用别的语言版本的多线程来测试下:
C 版本的多线程
#include<stdio.h> #include<sys/syscall.h> #include<sys/prctl.h> #include<pthread.h> void *test(void *name) { pid_t pid, tid; pid = getpid(); tid = syscall(__NR_gettid); char *tname = (char *)name; // 设置线程名字 prctl(PR_SET_NAME, tname); while(1) { printf("pid: %d, thread_id: %u, t_name: %s\n", pid, tid, tname); sleep(3); } } int main() { pthread_t t1, t2; void *ret; pthread_create(&t1, NULL, test, (void *)"Love_test_1"); pthread_create(&t2, NULL, test, (void *)"Love_test_2"); pthread_join(t1, &ret); pthread_join(t2, &ret); }
输出:
root@10-46-33-56:~# gcc t.c -lpthread && ./a.out pid: 5575, thread_id: 5577, t_name: Love_test_2 pid: 5575, thread_id: 5576, t_name: Love_test_1 pid: 5575, thread_id: 5577, t_name: Love_test_2 pid: 5575, thread_id: 5576, t_name: Love_test_1 ...
用 PS 命令再次验证:
root@10-46-33-56:~# ps -Tp 5575 PID SPID TTY TIME CMD 5575 5575 pts/2 00:00:00 a.out 5575 5576 pts/2 00:00:00 Love_test_1 5575 5577 pts/2 00:00:00 Love_test_2
这个才是正确嘛,线程名确实是可以通过 Ps 看出来的嘛!
不过为啥 Python 那个看不到呢?既然是通过 setName
设置线程名的,那就看看定义咯:
[threading.py] class Thread(_Verbose): ... @property def name(self): """A string used for identification purposes only. It has no semantics. Multiple threads may be given the same name. The initial name is set by the constructor. """ assert self.__initialized, "Thread.__init__() not called" return self.__name @name.setter def name(self, name): assert self.__initialized, "Thread.__init__() not called" self.__name = str(name) def setName(self, name): self.name = name ...
看到这里其实只是在 Thread
对象的属性设置了而已,并没有动到根本,那肯定就是看不到咯~
这样看起来,我们已经没办法通过 ps
或者 /proc/
这类手段在外部搜索 python 线程名了,所以我们只能在 Python 内部来解决。
于是问题就变成了,怎样在 Python 内部拿到所有正在运行的线程呢?
threading.enumerate
可以完美解决这个问题!Why?
Because 在下面这个函数的 doc 里面说得很清楚了,返回所有活跃的线程对象,不包括终止和未启动的。
[threading.py] def enumerate(): """Return a list of all Thread objects currently alive. The list includes daemonic threads, dummy thread objects created by current_thread(), and the main thread. It excludes terminated threads and threads that have not yet been started. """ with _active_limbo_lock: return _active.values() + _limbo.values()
因为拿到的是 Thread 的对象,所以我们通过这个能到该线程相关的信息!
请看完整代码示例:
#coding: utf8 import threading import os import time def get_thread(): pid = os.getpid() while True: ts = threading.enumerate() print '------- Running threads On Pid: %d -------' % pid for t in ts: print t.name, t.ident print time.sleep(1) def tt(): info = threading.currentThread() pid = os.getpid() while True: print 'pid: {}, tid: {}, tname: {}'.format(pid, info.name, info.ident) time.sleep(3) return t1 = threading.Thread(target=tt) t1.setName('Thread-test1') t1.setDaemon(True) t1.start() t2 = threading.Thread(target=tt) t2.setName('Thread-test2') t2.setDaemon(True) t2.start() t3 = threading.Thread(target=get_thread) t3.setName('Checker') t3.setDaemon(True) t3.start() t1.join() t2.join() t3.join()
输出:
root@10-46-33-56:~# python t_show.py pid: 6258, tid: Thread-test1, tname: 139907597162240 pid: 6258, tid: Thread-test2, tname: 139907586672384 ------- Running threads On Pid: 6258 ------- MainThread 139907616806656 Thread-test1 139907597162240 Checker 139907576182528 Thread-test2 139907586672384 ------- Running threads On Pid: 6258 ------- MainThread 139907616806656 Thread-test1 139907597162240 Checker 139907576182528 Thread-test2 139907586672384 ------- Running threads On Pid: 6258 ------- MainThread 139907616806656 Thread-test1 139907597162240 Checker 139907576182528 Thread-test2 139907586672384 ------- Running threads On Pid: 6258 ------- MainThread 139907616806656 Checker 139907576182528 ...
代码看起来有点长,但是逻辑相当简单,Thread-test1
和 Thread-test2
都是打印出当前的 pid、线程 id 和 线程名字,然后 3s 后退出,这个是想模拟线程正常退出。
而 Checker
线程则是每秒通过 threading.enumerate
输出当前进程内所有活跃的线程。
可以明显看到一开始是可以看到 Thread-test1
和 Thread-test2
的信息,当它俩退出之后就只剩下 MainThread
和 Checker
自身而已了。
销毁指定线程
既然能拿到名字和线程 id,那我们也就能干掉指定的线程了!
假设现在 Thread-test2
已经黑化,发疯了,我们需要制止它,那我们就可以通过这种方式解决了:
在上面的代码基础上,增加和补上下列代码:
def _async_raise(tid, exctype): """raises the exception, performs cleanup if needed""" tid = ctypes.c_long(tid) if not inspect.isclass(exctype): exctype = type(exctype) res = ctypes.pythonapi.PyThreadState_SetAsyncExc(tid, ctypes.py_object(exctype)) if res == 0: raise ValueError("invalid thread id") elif res != 1: ctypes.pythonapi.PyThreadState_SetAsyncExc(tid, None) raise SystemError("PyThreadState_SetAsyncExc failed") def stop_thread(thread): _async_raise(thread.ident, SystemExit) def get_thread(): pid = os.getpid() while True: ts = threading.enumerate() print '------- Running threads On Pid: %d -------' % pid for t in ts: print t.name, t.ident, t.is_alive() if t.name == 'Thread-test2': print 'I am go dying! Please take care of yourself and drink more hot water!' stop_thread(t) print time.sleep(1)
输出
root@10-46-33-56:~# python t_show.py pid: 6362, tid: 139901682108160, tname: Thread-test1 pid: 6362, tid: 139901671618304, tname: Thread-test2 ------- Running threads On Pid: 6362 ------- MainThread 139901706389248 True Thread-test1 139901682108160 True Checker 139901661128448 True Thread-test2 139901671618304 True Thread-test2: I am go dying. Please take care of yourself and drink more hot water! ------- Running threads On Pid: 6362 ------- MainThread 139901706389248 True Thread-test1 139901682108160 True Checker 139901661128448 True Thread-test2 139901671618304 True Thread-test2: I am go dying. Please take care of yourself and drink more hot water! pid: 6362, tid: 139901682108160, tname: Thread-test1 ------- Running threads On Pid: 6362 ------- MainThread 139901706389248 True Thread-test1 139901682108160 True Checker 139901661128448 True // Thread-test2 已经不在了
一顿操作下来,虽然我们这样对待 Thread-test2
,但它还是关心着我们:多喝热水,
PS: 热水虽好,八杯足矣,请勿贪杯哦。
书回正传,上述的方法是极为粗暴的,为什么这么说呢?
因为它的原理是:利用 Python 内置的 API,触发指定线程的异常,让其可以自动退出;
万不得已真不要用这种方法,有一定概率触发不可描述的问题。切记!别问我为什么会知道...
为什么停止线程这么难
多线程本身设计就是在进程下的协作并发,是调度的最小单元,线程间分食着进程的资源,所以会有许多锁机制和状态控制。
如果使用强制手段干掉线程,那么很大几率出现意想不到的bug。 而且最重要的锁资源释放可能也会出现意想不到问题。
我们甚至也无法通过信号杀死进程那样直接杀线程,因为 kill 只有对付进程才能达到我们的预期,而对付线程明显不可以,不管杀哪个线程,整个进程都会退出!
而因为有 GIL,使得很多童鞋都觉得 Python 的线程是Python 自行实现出来的,并非实际存在,Python 应该可以直接销毁吧?
然而事实上 Python 的线程都是货真价实的线程!
什么意思呢?Python 的线程是操作系统通过 pthread 创建的原生线程。Python 只是通过 GIL 来约束这些线程,来决定什么时候开始调度,比方说运行了多少个指令就交出 GIL,至于谁夺得花魁,得听操作系统的。
如果是单纯的线程,其实系统是有办法终止的,比如: pthread_exit
,pthread_kill
或 pthread_cancel
, 详情可看:https://www.cnblogs.com/Creat...
很可惜的是: Python 层面并没有这些方法的封装!我的天,好气!可能人家觉得,线程就该温柔对待吧。
如何温柔退出线程
想要温柔退出线程,其实差不多就是一句废话了~
要么运行完退出,要么设置标志位,时常检查标记位,该退出的就退出咯。
扩展
《如何正确的终止正在运行的子线程》:https://www.cnblogs.com/Creat...
《不要粗暴的销毁python线程》:http://xiaorui.cc/2017/02/22/...
欢迎各位大神指点交流, QQ讨论群: 258498217
转载请注明来源: https://segmentfault.com/a/11...
保留所有权利
如果觉得我的文章对你有用,请随意赞赏
你可能感兴趣的
2 条评论
舞林 · 1 天前
如果是我可能kill -9了,宁可错杀一千,不可放过一个,蛤蛤
赞
不行呀~ -9 进程里全死了~
以上是Python线程中定位与销毁的详细介绍(附示例)的详细内容。更多信息请关注PHP中文网其他相关文章!

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

选择Python还是C 取决于项目需求:1)如果需要快速开发、数据处理和原型设计,选择Python;2)如果需要高性能、低延迟和接近硬件的控制,选择C 。

通过每天投入2小时的Python学习,可以有效提升编程技能。1.学习新知识:阅读文档或观看教程。2.实践:编写代码和完成练习。3.复习:巩固所学内容。4.项目实践:应用所学于实际项目中。这样的结构化学习计划能帮助你系统掌握Python并实现职业目标。

在两小时内高效学习Python的方法包括:1.回顾基础知识,确保熟悉Python的安装和基本语法;2.理解Python的核心概念,如变量、列表、函数等;3.通过使用示例掌握基本和高级用法;4.学习常见错误与调试技巧;5.应用性能优化与最佳实践,如使用列表推导式和遵循PEP8风格指南。

Python适合初学者和数据科学,C 适用于系统编程和游戏开发。1.Python简洁易用,适用于数据科学和Web开发。2.C 提供高性能和控制力,适用于游戏开发和系统编程。选择应基于项目需求和个人兴趣。

Python更适合数据科学和快速开发,C 更适合高性能和系统编程。1.Python语法简洁,易于学习,适用于数据处理和科学计算。2.C 语法复杂,但性能优越,常用于游戏开发和系统编程。

每天投入两小时学习Python是可行的。1.学习新知识:用一小时学习新概念,如列表和字典。2.实践和练习:用一小时进行编程练习,如编写小程序。通过合理规划和坚持不懈,你可以在短时间内掌握Python的核心概念。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。