本篇文章给大家带来的内容是关于Java中final实现原理的深入分析(附示例),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。
final在Java中是一个保留的关键字,可以声明成员变量、方法、类以及本地变量。
一旦你将引用声明作final,你将不能改变这个引用了,编译器会检查代码,如果你试图将变量再次初始化的话,编译器会报编译错误。
一、final变量
final成员变量表示常量,只能被赋值一次,赋值后值不再改变(final要求地址值不能改变)
当final修饰一个基本数据类型时,表示该基本数据类型的值一旦在初始化后便不能发生变化;如果final修饰一个引用类型时,则在对其初始化之后便不能再让其指向其他对象了,但该引用所指向的对象的内容是可以发生变化的。本质上是一回事,因为引用的值是一个地址,final要求值,即地址的值不发生变化。
final修饰一个成员变量(属性),必须要显示初始化。这里有两种初始化方式,一种是在变量声明的时候初始化;第二种方法是在声明变量的时候不赋初值,但是要在这个变量所在的类的所有的构造函数中对这个变量赋初值。
二、final方法
使用final方法的原因有两个。
第一个原因是把方法锁定,以防任何继承类修改它的含义,不能被重写;
第二个原因是效率,final方法比非final方法要快,因为在编译的时候已经静态绑定了,不需要在运行时再动态绑定。
(注:类的private方法会隐式地被指定为final方法)
三、final类
当用final修饰一个类时,表明这个类不能被继承。
final类中的成员变量可以根据需要设为final,但是要注意final类中的所有成员方法都会被隐式地指定为final方法。
在使用final修饰类的时候,要注意谨慎选择,除非这个类真的在以后不会用来继承或者出于安全的考虑,尽量不要将类设计为final类。
四、final使用总结
final关键字的好处:
(1)final关键字提高了性能。JVM和Java应用都会缓存final变量。
(2)final变量可以安全的在多线程环境下进行共享,而不需要额外的同步开销。
(3)使用final关键字,JVM会对方法、变量及类进行优化。
关于final的重要知识点
1、final关键字可以用于成员变量、本地变量、方法以及类。
2、final成员变量必须在声明的时候初始化或者在构造器中初始化,否则就会报编译错误。
3、你不能够对final变量再次赋值。
4、本地变量必须在声明时赋值。
5、在匿名类中所有变量都必须是final变量。
6、final方法不能被重写。
7、final类不能被继承。
8、final关键字不同于finally关键字,后者用于异常处理。
9、final关键字容易与finalize()方法搞混,后者是在Object类中定义的方法,是在垃圾回收之前被JVM调用的方法。
10、接口中声明的所有变量本身是final的。
11、final和abstract这两个关键字是反相关的,final类就不可能是abstract的。
12、final方法在编译阶段绑定,称为静态绑定(static binding)。
13、没有在声明时初始化final变量的称为空白final变量(blank final variable),它们必须在构造器中初始化,或者调用this()初始化。不这么做的话,编译器会报错“final变量(变量名)需要进行初始化”。
14、将类、方法、变量声明为final能够提高性能,这样JVM就有机会进行估计,然后优化。
15、按照Java代码惯例,final变量就是常量,而且通常常量名要大写。
16、对于集合对象声明为final指的是引用不能被更改,但是你可以向其中增加,删除或者改变内容。
五、final原理
最好先理解java内存模型 Java并发(二):Java内存模型
对于final域,编译器和处理器要遵守两个重排序规则:
1.在构造函数内对一个final域的写入,与随后把这个被构造对象的引用赋值给一个引用变量,这两个操作之间不能重排序。
(先写入final变量,后调用该对象引用)
原因:编译器会在final域的写之后,插入一个StoreStore屏障
2.初次读一个包含final域的对象的引用,与随后初次读这个final域,这两个操作之间不能重排序。
(先读对象的引用,后读final变量)
编译器会在读final域操作的前面插入一个LoadLoad屏障
示例1:
public class FinalExample { int i; // 普通变量 final int j; // final 变量 static FinalExample obj; public void FinalExample() { // 构造函数 i = 1; // 写普通域 j = 2; // 写 final 域 } public static void writer() { // 写线程 A 执行 obj = new FinalExample(); } public static void reader() { // 读线程 B 执行 FinalExample object = obj; // 读对象引用 int a = object.i; // 读普通域 a=1或者a=0或者直接报错i没有初始化 int b = object.j; // 读 final域 b=2 } }
第一种情况:写普通域的操作被编译器重排序到了构造函数之外
而写 final 域的操作,被写 final 域的重排序规则“限定”在了构造函数之内,读线程 B 正确的读取了 final 变量初始化之后的值。
写 final 域的重排序规则可以确保:在对象引用为任意线程可见之前,对象的 final 域已经被正确初始化过了,而普通域不具有这个保障。
第二种情况:读对象的普通域的操作被处理器重排序到读对象引用之前
而读 final 域的重排序规则会把读对象 final 域的操作“限定”在读对象引用之后,此时该 final 域已经被 A 线程初始化过了,这是一个正确的读取操作。
读 final 域的重排序规则可以确保:在读一个对象的 final 域之前,一定会先读包含这个 final 域的对象的引用。
示例2:如果 final 域是引用类型
对于引用类型,写 final 域的重排序规则对编译器和处理器增加了如下约束:
在构造函数内对一个 final 引用的对象的成员域的写入,与随后在构造函数外把这个被构造对象的引用赋值给一个引用变量,这两个操作之间不能重排序。
public class FinalReferenceExample { final int[] intArray; // final 是引用类型 static FinalReferenceExample obj; public FinalReferenceExample() { // 构造函数 intArray = new int[1]; // 1 intArray[0] = 1; // 2 } public static void writerOne() { // 写线程 A 执行 obj = new FinalReferenceExample(); // 3 } public static void writerTwo() { // 写线程 B 执行 obj.intArray[0] = 2; // 4 } public static void reader() { // 读线程 C 执行 if (obj != null) { // 5 int temp1 = obj.intArray[0]; // 6 temp1=1或者temp1=2,不可能等于0 } } }
假设首先线程 A 执行 writerOne() 方法,执行完后线程 B 执行 writerTwo() 方法,执行完后线程 C 执行 reader () 方法。
在上图中,1 是对 final 域的写入,2 是对这个 final 域引用的对象的成员域的写入,3 是把被构造的对象的引用赋值给某个引用变量。这里除了前面提到的 1 不能和 3 重排序外,2 和 3 也不能重排序。
JMM 可以确保读线程 C 至少能看到写线程 A 在构造函数中对 final 引用对象的成员域的写入。即 C 至少能看到数组下标 0 的值为 1。而写线程 B 对数组元素的写入,读线程 C 可能看的到,也可能看不到。JMM 不保证线程 B 的写入对读线程 C 可见,因为写线程 B 和读线程 C 之间存在数据竞争,此时的执行结果不可预知。
以上是Java中final实现原理的深入分析(附示例)的详细内容。更多信息请关注PHP中文网其他相关文章!

javaispopularforcross-platformdesktopapplicationsduetoits“ writeonce,runanywhere”哲学。1)itusesbytbytybytecebytecodethatrunsonanyjvm-platform.2)librarieslikeslikeslikeswingingandjavafxhelpcreatenative-lookingenative-lookinguisis.3)

在Java中编写平台特定代码的原因包括访问特定操作系统功能、与特定硬件交互和优化性能。1)使用JNA或JNI访问Windows注册表;2)通过JNI与Linux特定硬件驱动程序交互;3)通过JNI使用Metal优化macOS上的游戏性能。尽管如此,编写平台特定代码会影响代码的可移植性、增加复杂性、可能带来性能开销和安全风险。

Java将通过云原生应用、多平台部署和跨语言互操作进一步提升平台独立性。1)云原生应用将使用GraalVM和Quarkus提升启动速度。2)Java将扩展到嵌入式设备、移动设备和量子计算机。3)通过GraalVM,Java将与Python、JavaScript等语言无缝集成,增强跨语言互操作性。

Java的强类型系统通过类型安全、统一的类型转换和多态性确保了平台独立性。1)类型安全在编译时进行类型检查,避免运行时错误;2)统一的类型转换规则在所有平台上一致;3)多态性和接口机制使代码在不同平台上行为一致。

JNI会破坏Java的平台独立性。1)JNI需要特定平台的本地库,2)本地代码需在目标平台编译和链接,3)不同版本的操作系统或JVM可能需要不同的本地库版本,4)本地代码可能引入安全漏洞或导致程序崩溃。

新兴技术对Java的平台独立性既有威胁也有增强。1)云计算和容器化技术如Docker增强了Java的平台独立性,但需要优化以适应不同云环境。2)WebAssembly通过GraalVM编译Java代码,扩展了其平台独立性,但需与其他语言竞争性能。

不同JVM实现都能提供平台独立性,但表现略有不同。1.OracleHotSpot和OpenJDKJVM在平台独立性上表现相似,但OpenJDK可能需额外配置。2.IBMJ9JVM在特定操作系统上表现优化。3.GraalVM支持多语言,需额外配置。4.AzulZingJVM需特定平台调整。

平台独立性通过在多种操作系统上运行同一套代码,降低开发成本和缩短开发时间。具体表现为:1.减少开发时间,只需维护一套代码;2.降低维护成本,统一测试流程;3.快速迭代和团队协作,简化部署过程。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

Atom编辑器mac版下载
最流行的的开源编辑器

WebStorm Mac版
好用的JavaScript开发工具

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能