本篇文章给大家带来的内容是关于python中找到最大或最小的N个元素的实现代码,有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。
1、需求
我们想在某个集合中找出最大或最小的N个元素
2、解决方案
heapq模块中有两个函数:nlargest()和nsmallest()
代码:
import heapq nums=[1,444,66,77,34,67,2,6,8,2,4,9,556] print(heapq.nlargest(3,nums)) print(heapq.nsmallest(3,nums))
结果:
[556, 444, 77] [1, 2, 2]
这个两个函数都可以接受一个参数key,从而允许他们可以工作在更加复杂的数据结构上:
代码:
import heapq portfolio=[ {'name':'IBM','shares':100,'price':91.1}, {'name':'AAPL','shares':50,'price':543.22}, {'name':'FB','shares':200,'price':21.09}, {'name':'HPQ','shares':35,'price':31.75}, {'name':'YHOO','shares':45,'price':16.35}, ] cheap=heapq.nsmallest(3,portfolio,key=lambda s:s['price']) expensive=heapq.nlargest(3,portfolio,key=lambda s:s['price']) print(cheap) print(expensive)
结果:
[{'name': 'YHOO', 'shares': 45, 'price': 16.35}, {'name': 'FB', 'shares': 200, 'price': 21.09}, {'name': 'HPQ', 'shares': 35, 'price': 31.75}] [{'name': 'AAPL', 'shares': 50, 'price': 543.22}, {'name': 'IBM', 'shares': 100, 'price': 91.1}, {'name': 'HPQ', 'shares': 35, 'price': 31.75}]
如果只是简单的查找最小或者最大的元素(N=1),那么使用min()和max()会更快。
以上是python中找到最大或最小的N个元素的实现代码的详细内容。更多信息请关注PHP中文网其他相关文章!

pythonlistsareimplementedasdynamicarrays,notlinkedlists.1)他们areStoredIncoNtiguulMemoryBlocks,mayrequireRealLealLocationWhenAppendingItems,EmpactingPerformance.2)LinkesedlistSwoldOfferefeRefeRefeRefeRefficeInsertions/DeletionsButslowerIndexeDexedAccess,Lestpypytypypytypypytypy

pythonoffersFourmainMethodStoreMoveElement Fromalist:1)删除(值)emovesthefirstoccurrenceofavalue,2)pop(index)emovesanderturnsanelementataSpecifiedIndex,3)delstatementremoveselemsbybybyselementbybyindexorslicebybyindexorslice,and 4)

toresolvea“ dermissionded”错误Whenrunningascript,跟随台词:1)CheckAndAdjustTheScript'Spermissions ofchmod xmyscript.shtomakeitexecutable.2)nesureThEseRethEserethescriptistriptocriptibationalocatiforecationAdirectorywherewhereyOuhaveWritePerMissionsyOuhaveWritePermissionsyYouHaveWritePermissions,susteSyAsyOURHomeRecretectory。

ArraysarecrucialinPythonimageprocessingastheyenableefficientmanipulationandanalysisofimagedata.1)ImagesareconvertedtoNumPyarrays,withgrayscaleimagesas2Darraysandcolorimagesas3Darrays.2)Arraysallowforvectorizedoperations,enablingfastadjustmentslikebri

ArraySaresificatificallyfasterthanlistsForoperationsBenefiting fromDirectMemoryAcccccccCesandFixed-Sizestructures.1)conscessingElements:arraysprovideconstant-timeaccessduetocontoconcotigunmorystorage.2)iteration:araysleveragececacelocality.3)

ArraySareBetterForlement-WiseOperationsDuetofasterAccessCessCessCessCessCessAndOptimizedImplementations.1)ArrayshaveContiguucuulmemoryfordirectAccesscess.2)列出sareflexible butslible dueTopotentEnallymideNamicizing.3)forlarargedAtaTasetsetsetsetsetsetsetsetsetsetsetlib

在NumPy中进行整个数组的数学运算可以通过向量化操作高效实现。 1)使用简单运算符如加法(arr 2)可对数组进行运算。 2)NumPy使用C语言底层库,提升了运算速度。 3)可以进行乘法、除法、指数等复杂运算。 4)需注意广播操作,确保数组形状兼容。 5)使用NumPy函数如np.sum()能显着提高性能。

在Python中,向列表插入元素有两种主要方法:1)使用insert(index,value)方法,可以在指定索引处插入元素,但在大列表开头插入效率低;2)使用append(value)方法,在列表末尾添加元素,效率高。对于大列表,建议使用append()或考虑使用deque或NumPy数组来优化性能。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

禅工作室 13.0.1
功能强大的PHP集成开发环境

记事本++7.3.1
好用且免费的代码编辑器

Dreamweaver Mac版
视觉化网页开发工具

WebStorm Mac版
好用的JavaScript开发工具

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。