本篇文章给大家带来的内容是关于python中正则表达式的简单介绍(附代码),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。
正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符、及这些特定字符的组合,组成一个“规则字符串”,这个“规则字符串”用来表达对字符串的一种过滤逻辑。
在python中正则表达式被封装到了re模块,通过引入re模块来使用正则表达式
re模块中有很多正则表达式处理函数,首先用findall函数介绍基本基本字符的含义
元字符有:. \ * + ? ^ $ | {} [] ()
findall函数
遍历匹配,可以获取字符串中所有匹配的字符串,返回一个列表
. 匹配任意除换行符"\n"外的字符
import re temp=re.findall("a.c","abcdefagch") print(temp)#['abc', 'agc']
* 匹配前一个字符0或多次
temp=re.findall("a*b","abcaaaaabcdefb") print(temp)#['ab', 'aaaaab', 'b']
+ 匹配前一个字符1次或无限次
temp=re.findall("a+b","abcaaaaabcdefb") print(temp)#['ab', 'aaaaab']
? 匹配前一个字符0次或1次
temp=re.findall("a?b","abcaaaaabcdefb") print(temp)#['ab', 'ab', 'b']
^ 匹配字符串开头。在多行模式中匹配每一行的开头
temp=re.findall("^ab","abcaaaaabcdefb") print(temp)#['ab']
$ 匹配字符串末尾,在多行模式中匹配每一行的末尾
temp=re.findall("ab$","abcaaaaabcdefab") print(temp)#['ab']
| 或。匹配|左右表达式任意一个,从左到右匹配,如果|没有包括在()中,则它的范围是整个正则表达式
temp=re.findall("abc|def","abcdef") print(temp)#['abc', 'def']
{} {m}匹配前一个字符m次,{m,n}匹配前一个字符m至n次,若省略n,则匹配m至无限次
temp=re.findall("a{3}","aabaaacaaaad") print(temp)#['aaa', 'aaa'] temp=re.findall("a{3,5}","aaabaaaabaaaaabaaaaaa") print(temp)#['aaa', 'aaaa', 'aaaaa', 'aaaaa']在获取了3个a后,若下一个还是a,并不会得到aaa,而是算下一个a
[] 字符集。对应的位置可以是字符集中任意字符。字符集中的字符可以逐个列出,也可以给出范围,如[abc]或[a-c]。[^abc]表示取反,即非abc,所有特殊字符在字符集中都失去其原有的特殊含义。用\反斜杠转义恢复特殊字符的特殊含义。
temp=re.findall("a[bcd]e","abcdefagch") print(temp)#[]此时bcd为b或c或d temp=re.findall("a[a-z]c","abcdefagch") print(temp)#['abc', 'agc'] temp=re.findall("[^a]","aaaaabcdefagch") print(temp)#['b', 'c', 'd', 'e', 'f', 'g', 'c', 'h'] temp=re.findall("[^ab]","aaaaabcdefagch") print(temp)#['c', 'd', 'e', 'f', 'g', 'c', 'h']a和b都不会被匹配
() 被括起来的表达式将作为分组,从表达式左边开始每遇到一个分组的左括号“(”,编号+1.分组表达式作为一个整体,可以后接数量词。表达式中的|仅在该组中有效。
temp=re.findall("(abc){2}a(123|456)c","abcabca456c") print(temp)#[('abc', '456')] temp=re.findall("(abc){2}a(123|456)c","abcabca456cbbabcabca456c") print(temp)#[('abc', '456'), ('abc', '456')] #这里有()的情况中,findall会将该规则的每个()中匹配到的字符创放到一个元组中
要想看到被完全匹配的内容,我们可以使用一个新的函数search函数
search函数
在字符串内查找模式匹配,只要找到第一个匹配然后返回,如果字符串没有匹配,则返回None
temp=re.search("(abc){2}a(123|456)c","abcabca456c") print(temp)#<re.Match object; span=(0, 11), match='abcabca456c'> print(temp.group())#abcabca456c
\ 转义字符,使后一个字符改变原来的意思
反斜杠后边跟元字符去除特殊功能;(即将特殊字符转义成普通字符)
temp=re.search("a\$","abcabca456ca$") print(temp)#<<re.Match object; span=(11, 13), match='a$'> print(temp.group())#a$
引用序号对应的字组所匹配的字符串。
即下面的\2为前边第二个括号中的内容,2代表第几个,从1开始
a=re.search(r'(abc)(def)gh\2','abcdefghabc abcdefghdef').group() print(a)#abcdefghdef
反斜杠后边跟普通字符实现特殊功能;(即预定义字符)
预定义字符有:\d \D \s \S \w \W \A \Z \b \B
预定义字符在字符集中仍有作用
\d 数字:[0-9]
temp=re.search("a\d+b","aaa234bbb") print(temp.group())#a234b
\D 非数字:[^\d]
\s 匹配任何空白字符:[5a2d35257a197650e1bc2acbd5df2ca2\t\r\n\f\v]
temp=re.search("a\s+b","aaa bbb") print(temp.group())#a b
\S 非空白字符:[^\s]
\w 匹配包括下划线在内的任何字字符:[A-Za-z0-9_]
\W 匹配非字母字符,即匹配特殊字符
temp=re.search("\W","$") print(temp.group())#$
\A 仅匹配字符串开头,同^
\Z 仅匹配字符串结尾,同$
\b 匹配\w和\W之间的边界
temp=re.search(r"\bas\b","a as$d") print(temp.group())#$as
\B [^\b]
下面介绍其他的re常用函数
compile函数
编译正则表达式模式,返回一个对象的模式
rule = re.compile("abc\d+\w") str = "aaaabc6def" temp = rule.findall(str) print(temp)#['abc6d']
match函数
在字符串刚开始的位置匹配,和^功能相同
temp=re.match("asd","asdfasd") print(temp.group())#asd
finditer函数
将所有匹配到的字符串以match对象的形式按顺序放到一个迭代器中返回
temp=re.finditer("\d+","as11d22f33a44sd") print(temp)#<callable_iterator object at 0x00000242EEEE9E48> for i in temp: print(i.group()) #11 #22 #33 #44
split函数
用于分割字符串,将分割后的字符串放到一个列表中返回
如果在字符串的首或尾分割,将会出现一个空字符串
temp=re.split("\d+","as11d22f33a44sd55") print(temp)#['as', 'd', 'f', 'a', 'sd', '']
使用字符集分割
如下先以a分割,再将分割后的字符串们以b分割,所以会出现3个空字符串
temp=re.split("[ab]","ab123b456ba789b0") print(temp)#['', '', '123', '456', '', '789', '0']
sub函数
将re匹配到的部分进行替换再返回新的字符串
temp=re.sub("\d+","_","ab123b456ba789b0") print(temp)#ab_b_ba_b_
后边还可以再加一个参数表示替换次数,默认为0表示全替换
subn函数
将re匹配到的部分进行替换再返回一个装有新字符串和替换次数的元组
temp=re.subn("\d+","_","ab123b456ba789b0") print(temp)#('ab_b_ba_b_', 4)
然后讲一下特殊分组
temp=re.search("(?P<number>\d+)(?P<letter>[a-zA-Z])","ab123b456ba789b0") print(temp.group("number"))#123 print(temp.group("letter"))#b
以?P8a11bc632ea32a57b3e3693c7987c420的形式起名
最后说一下惰性匹配和贪婪匹配
temp=re.search("\d+","123456") print(temp.group())#123456
此时为贪婪匹配,即只要符合就匹配到底
temp=re.search("\d+?","123456") print(temp.group())#1
在后面加一个?变为惰性匹配,即只要匹配成功一个字符就结束匹配
相关推荐:
以上是python中正则表达式的简单介绍(附代码)的详细内容。更多信息请关注PHP中文网其他相关文章!

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

Atom编辑器mac版下载
最流行的的开源编辑器

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

WebStorm Mac版
好用的JavaScript开发工具