搜索
首页Javajava教程带你们了解Java8 HashMap源码解析的步骤

带你们了解Java8 HashMap源码解析的步骤

Sep 13, 2018 pm 01:56 PM
hashmap源码解析

用过java的朋友或多或少对HashMap有一些不了解的地方,文章内容很紧凑,希望大家坚持学习哦

前言

Java7中的HashMap和Java8中的HashMap不太一样,Java7中的HashMap主要是由数组 链表组成的,而Java8中的HashMap是由数组 链表 红黑树组成的,当链表的长度超过8个时,就会转为红黑树,降低查找时的时间复杂度,从而提高效率。这里主要分析的是Java8中的HashMap。

使用简介

在日常开发中,我们在使用HashMap的时候,有以下两种初始化方式:
   1、通过new HashMap()不指定初始值大小;
   2、通过new HashMap(int initialCapacity)指定初始值大小。

初始化

//  数组的默认初始容量
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
//  最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
//  默认负载因子(用来控制阈值和容量,当数组已经存放的容量超过了阈值时,容量会扩大一倍
//  阈值 = 最大容量 * 负载因子)
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//  默认链表的最大长度(当链表的长度超过8时会被转换为红黑树)
static final int TREEIFY_THRESHOLD = 8;
//  使用第一种初始化方式时,默认初始化容量是2的4次
public HashMap() {    
this.loadFactor = DEFAULT_LOAD_FACTOR; 
}
public HashMap(int initialCapacity) {   
     this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
     public HashMap(int initialCapacity, float loadFactor) {   
      //  不能小于0
    if (initialCapacity < 0) 
             throw new IllegalArgumentException("Illegal initial capacity: initialCapacity); 
                //  超过2的30次方,则最大容量为2的30次方
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;  
                  if (loadFactor <= 0 || Float.isNaN(loadFactor))   
                       throw new IllegalArgumentException("Illegal load factor: loadFactor);
                           this.loadFactor = loadFactor;   
                 //  计算阈值(在第一次put值的时候,会在resize()方法中重新计算)
    this.threshold = tableSizeFor(initialCapacity);
}

HashMap#put()

public V put(K key, V value) 
{    return putVal(hash(key), key, value, false, true);
}
static final int hash(Object key) {  
  int h;    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

hash()方法主要是对存入的key值进行判断,如果为null,则返回0;不为null,则返回key的hash值与hash值无符号右移16位以后的值进行按位异或的结果(有点绕口)。由此可以看出HashMap的key值可以为null。

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;   
     //  第一次put值时,会初始化当前数组长度,如果没有指定,则默认为16
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;  
          //  找到在数组中对应的下标,如果该位置没有值,那么直接初始化一个Node放在此位置
             // 由&运算可以确保(n - 1) & hash一定是小于数组容量
        tab[i] = newNode(hash, key, value, null);  
          else {
        Node<K,V> e; K k;        
        //  如果key值已经存在,则取出这个节点
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;       
             //  如果当前key值的节点是红黑树,则调用红黑树的插值算法
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);    
                else {            
                //  如果是链表,则遍历链表,采用尾插的方式
            for (int binCount = 0; ; ++binCount) {               
             if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);        
                   //  如果链表的长度大于等于8,则将链表转换为红黑树
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1sttreeifyBin(tab, hash);       
                                 break;
                }               
                 //  如果在链表的节点中存在相同的key,则结束循环
                if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))                    break;
                p = e;
            }
        }        //  如果存在相同的key值,则重新赋值,并且返回旧值
        if (e != null) { 
        // existing mapping for key
            V oldValue = e.value;           
             //  由源码可知onlyIfAbsent默认false 
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);  
          return oldValue;
        }
    }
    ++modCount;   
     //  如果数组已经容纳的长度超过了设定的阈值,则会对该数组进行扩容,每次扩容是之前长度的两倍
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);   
     //  每一个不同的key值第一次put的时候返回null。
    return null;
}

HashMap#resize()

resize()方法主要作用是初始化数组或对数组进行扩容计算。

    final Node<K,V>[] resize() {    
       //  备份原始数组
    Node<K,V>[] oldTab = table;    
    //  第一次put值的时候为0
    int oldCap = (oldTab == null) ? 0 : oldTab.length;   
     //  如果没有指定初始值大小,第一次put值的时候阈值为0
    int oldThr = threshold;    int newCap, newThr = 0;   
     //  如果数组不为null且长度不为0,则会
    if (oldCap > 0) {       
     //  如果长度大于等2的30次方,则默认阈值为int的最大值(即2的31次方减1)
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;            
            return oldTab;
        }       
         //  如果将数组长度扩大一倍后的值小于2的30次方并且数组之前的长度大于等于2的4次方,则将阈值扩大
          //  一倍,否则阈值会在下面的if (newThr == 0)中进行赋值
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&oldCap >= DEFAULT_INITIAL_CAPACITY)     
               //  将阈值扩大一倍
            newThr = oldThr << 1; // double threshold
          }   
     //  如果使用new HashMap(int initialCapacity)初始化,则第一次put值时会进入这里
    else if (oldThr > 0) 
        initial capacity was placed in threshold
        newCap = oldThr;  
          //  如果使用new HashMap()初始化,则第一次put值时会进入这里
    else {             
          zero initial threshold signifies using defaults
        //  默认数组大小是2的4次方
        newCap = DEFAULT_INITIAL_CAPACITY;        
        //  默认负载因子是0.75,即默认阈值为12
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }   
     //  只有以下两种情况会进入到if判断中:
      //  1、在使用new HashMap(int initialCapacity)初始化,并且第一次put值的时候
      //   2、对数组进行扩容且数组的原始长度小于2的4次方的时候
    if (newThr == 0) {       
     //  根据指定的数组大小和负载因子乘积得到阈值
        float ft = (float)newCap * loadFactor;       
      //  如果数组大小和阈值都小于2的20次方,则确定阈值
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                    (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;   
     @SuppressWarnings({"rawtypes","unchecked"})   
      //  用新的数组大小初始化新的数组
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;   
     //  如果是第一次初始化,则直接返回newTab。如果不是则会进行数据的迁移操作
    if (oldTab != null) {  
          //  遍历数组
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;            
            if ((e = oldTab[j]) != null) {         
                   //  将已经被取出的位置置空
                oldTab[j] = null;       
                         //  如果数组该位置只是单个节点,那么直接赋值
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;   
                                 //  如果数组该位置是红黑树
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);    
                                //  如果数组该位置是链表,保证原始的循序进行迁移
                else { 
                      preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;                        
                        if ((e.hash & oldCap) == 0) {                            
                        if (loTail == null)
                                loHead = e;                            
                                else
                                loTail.next = e;
                            loTail = e;
                        }                        
                        else {                            
                        if (hiTail == null)
                                hiHead = e;                            
                                else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);                    
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }                    
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }    return newTab;
}

由resize()方法可以看出,负载因子决定了数组的容量和使用程度。
负载因子越大则数组的填装密度越高,也就是能容纳更多的元素。但是由于数组插入或删除元素的时间复杂度O(n),所以索引的效率会变低。
但是,负载因子越小则数组中的填装密度越稀疏,此时会空间的浪费,但是此时索引效率高(用空间换取时间)。

HashMap#get()

相较于put方法,get方法就显得尤为简单,因为不再需要关心扩容问题,只需要处理数据的获取。

public V get(Object key) {
    Node<K,V> e; 
       return (e = getNode(hash(key), key)) == null ? null : e.value;
}

final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;    //  首先判断数组不为null以及长度大于0并且对应位置节点不为null
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {        //  判断第一个节点是否满足条件
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))            return first;        //  如果节点的下一个节点不为null
        if ((e = first.next) != null) {            //  判断该节点是否为红黑树
            if (first instanceof TreeNode)                return ((TreeNode<K,V>)first).getTreeNode(hash, key);            //  遍历链表,判断是否有满足条件的节点存在
            do {                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))                    return e;
            } while ((e = e.next) != null);
        }
    }    return null;
}

相关推荐:

HashMap源码剖析

详解Java集合框架HashSet和HashMap源码剖析(图)

以上是带你们了解Java8 HashMap源码解析的步骤的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
如何将Maven或Gradle用于高级Java项目管理,构建自动化和依赖性解决方案?如何将Maven或Gradle用于高级Java项目管理,构建自动化和依赖性解决方案?Mar 17, 2025 pm 05:46 PM

本文讨论了使用Maven和Gradle进行Java项目管理,构建自动化和依赖性解决方案,以比较其方法和优化策略。

如何使用适当的版本控制和依赖项管理创建和使用自定义Java库(JAR文件)?如何使用适当的版本控制和依赖项管理创建和使用自定义Java库(JAR文件)?Mar 17, 2025 pm 05:45 PM

本文使用Maven和Gradle之类的工具讨论了具有适当的版本控制和依赖关系管理的自定义Java库(JAR文件)的创建和使用。

如何使用咖啡因或Guava Cache等库在Java应用程序中实现多层缓存?如何使用咖啡因或Guava Cache等库在Java应用程序中实现多层缓存?Mar 17, 2025 pm 05:44 PM

本文讨论了使用咖啡因和Guava缓存在Java中实施多层缓存以提高应用程序性能。它涵盖设置,集成和绩效优势,以及配置和驱逐政策管理最佳PRA

如何将JPA(Java持久性API)用于具有高级功能(例如缓存和懒惰加载)的对象相关映射?如何将JPA(Java持久性API)用于具有高级功能(例如缓存和懒惰加载)的对象相关映射?Mar 17, 2025 pm 05:43 PM

本文讨论了使用JPA进行对象相关映射,并具有高级功能,例如缓存和懒惰加载。它涵盖了设置,实体映射和优化性能的最佳实践,同时突出潜在的陷阱。[159个字符]

Java的类负载机制如何起作用,包括不同的类载荷及其委托模型?Java的类负载机制如何起作用,包括不同的类载荷及其委托模型?Mar 17, 2025 pm 05:35 PM

Java的类上载涉及使用带有引导,扩展程序和应用程序类负载器的分层系统加载,链接和初始化类。父代授权模型确保首先加载核心类别,从而影响自定义类LOA

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
1 个月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
1 个月前By尊渡假赌尊渡假赌尊渡假赌

热工具

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具