搜索
首页后端开发Python教程Python中并发future模块的介绍(代码)

本篇文章给大家带来的内容是关于Python中并发future模块的介绍(代码) ,有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。

concurrent.futures模块

该模块主要特色在于ThreadPoolExecutor 和 ProcessPoolExecutor 类,这两个类都继承自concurrent.futures._base.Executor类,它们实现的接口能分别在不同的线程或进程中执行可调用的对象,它们都在内部维护着一个工作线程或者进程池。

ThreadPoolExecutor 和 ProcessPoolExecutor 类是高级类,大部分情况下只要学会使用即可,无需关注其实现细节。

####ProcessPoolExecutor 类

>class ThreadPoolExecutor(concurrent.futures._base.Executor)

>|  This is an abstract base class for concrete asynchronous executors.

>|  Method resolution order:

>|      ThreadPoolExecutor

 |      concurrent.futures._base.Executor

 |      builtins.object

 |

 |  Methods defined here:

 |

 |  init(self, max_workers=None, thread_name_prefix='')

 |      Initializes a new ThreadPoolExecutor instance.

 |

 |      Args:

 |          max_workers: The maximum number of threads that can be used to

 |              execute the given calls.

 |          thread_name_prefix: An optional name prefix to give our threads.

 |

 |  shutdown(self, wait=True)

 |      Clean-up the resources associated with the Executor.

 |

 |      It is safe to call this method several times. Otherwise, no other

 |      methods can be called after this one.

 |

 |      Args:

 |          wait: If True then shutdown will not return until all running

 |              futures have finished executing and the resources used by the

 |              executor have been reclaimed.

 |

 |  submit(self, fn, *args, **kwargs)

 |      Submits a callable to be executed with the given arguments.

 |

 |      Schedules the callable to be executed as fn(*args, **kwargs) and returns

 |      a Future instance representing the execution of the callable.

 |

 |      Returns:

 |          A Future representing the given call.

 |

 |  ----------------------------------------------------------------------

 |  Methods inherited from concurrent.futures._base.Executor:

 |

 |  enter(self)

 |

 |  exit(self, exc_type, exc_val, exc_tb)

 |

 |  map(self, fn, *iterables, timeout=None, chunksize=1)

 |      Returns an iterator equivalent to map(fn, iter).

 |

 |      Args:

 |          fn: A callable that will take as many arguments as there are

 |              passed iterables.

 |          timeout: The maximum number of seconds to wait. If None, then there

 |              is no limit on the wait time.

 |          chunksize: The size of the chunks the iterable will be broken into

 |              before being passed to a child process. This argument is only

 |              used by ProcessPoolExecutor; it is ignored by

 |              ThreadPoolExecutor.

 |

 |      Returns:

 |          An iterator equivalent to: map(func, *iterables) but the calls may

 |          be evaluated out-of-order.

 |

 |      Raises:

 |          TimeoutError: If the entire result iterator could not be generated

 |              before the given timeout.

 |          Exception: If fn(*args) raises for any values.

初始化可以指定一个最大进程数作为其参数 max_workers 的值,该值一般无需指定,默认为当前运行机器的核心数,可以由os.cpu_count()获取;类中含有方法:

  1. map()方法,与python内置方法map() 功能类似,也就是映射,参数为:

  • 一个可调用函数 fn

  • 一个迭代器 iterables

  • 超时时长 timeout

  • 块数chuncksize 如果大于1, 迭代器会被分块处理

---->> 该函数有一个特性:其返回结果与调用开始的顺序是一致的;在调用过程中不会产生阻塞,也就是说可能前者被调用执行结束之前,后者被调用已经执行结束了。

如果一定要获取到所有结果后再处理,可以选择采用submit()方法和futures.as_completed函数结合使用。

  1. shutdown()方法,清理所有与当前执行器(executor)相关的资源

  2. submit() 方法,提交一个可调用对象给fn使用

  3. 从concurrent.futures._base.Executor继承了__enter__() 和 __exit__()方法,这意味着ProcessPoolExecutor 对象可以用于with 语句。

from concurrent import futures
with futures.ProcessPoolExecutor(max_works=3) as executor:
     executor.map()

ThreadPoolExecutor类

class ThreadPoolExecutor(concurrent.futures._base.Executor)

 |  This is an abstract base class for concrete asynchronous executors.

 |

 |  Method resolution order:

 |      ThreadPoolExecutor

 |      concurrent.futures._base.Executor

 |      builtins.object

 |

 |  Methods defined here:

 |

 |  init(self, max_workers=None, thread_name_prefix='')

 |      Initializes a new ThreadPoolExecutor instance.

 |

 |      Args:

 |          max_workers: The maximum number of threads that can be used to

 |              execute the given calls.

 |          thread_name_prefix: An optional name prefix to give our threads.

 |

 |  shutdown(self, wait=True)

 |      Clean-up the resources associated with the Executor.

 |

 |      It is safe to call this method several times. Otherwise, no other

 |      methods can be called after this one.

 |

 |      Args:

 |          wait: If True then shutdown will not return until all running

 |              futures have finished executing and the resources used by the

 |              executor have been reclaimed.

 |

 |  submit(self, fn, *args, **kwargs)

 |      Submits a callable to be executed with the given arguments.

 |

 |      Schedules the callable to be executed as fn(*args, **kwargs) and returns

 |      a Future instance representing the execution of the callable.

 |

 |      Returns:

 |          A Future representing the given call.

 |

 |  ----------------------------------------------------------------------

 |  Methods inherited from concurrent.futures._base.Executor:

 |

 |  enter(self)

 |

 |  exit(self, exc_type, exc_val, exc_tb)

 |

 |  map(self, fn, *iterables, timeout=None, chunksize=1)

 |      Returns an iterator equivalent to map(fn, iter).

 |

 |      Args:

 |          fn: A callable that will take as many arguments as there are

 |              passed iterables.

 |          timeout: The maximum number of seconds to wait. If None, then there

 |              is no limit on the wait time.

 |          chunksize: The size of the chunks the iterable will be broken into

 |              before being passed to a child process. This argument is only

 |              used by ProcessPoolExecutor; it is ignored by

 |              ThreadPoolExecutor.

 |

 |      Returns:

 |          An iterator equivalent to: map(func, *iterables) but the calls may

 |          be evaluated out-of-order.

 |

 |      Raises:

 |          TimeoutError: If the entire result iterator could not be generated

 |              before the given timeout.

 |          Exception: If fn(*args) raises for any values.

与ProcessPoolExecutor 类十分相似,只不过一个是处理进程,一个是处理线程,可根据实际需要选择。

示例

from time import sleep, strftime
from concurrent import futures


def display(*args):
    print(strftime('[%H:%M:%S]'), end="")
    print(*args)


def loiter(n):
    msg = '{}loiter({}): doing nothing for {}s'
    display(msg.format('\t'*n, n, n))
    sleep(n)
    msg = '{}loiter({}): done.'
    display(msg.format('\t'*n, n))
    return n*10


def main():
    display('Script starting')
    executor = futures.ThreadPoolExecutor(max_workers=3)
    results = executor.map(loiter, range(5))
    display('results:', results)
    display('Waiting for inpidual results:')
    for i, result in enumerate(results):
        display('result {} : {}'.format(i, result))


if __name__ == '__main__':
    main()

运行结果:

[20:32:12]Script starting
[20:32:12]loiter(0): doing nothing for 0s
[20:32:12]loiter(0): done.
[20:32:12]      loiter(1): doing nothing for 1s
[20:32:12]              loiter(2): doing nothing for 2s
[20:32:12]results: <generator object Executor.map.<locals>.result_iterator at 0x00000246DB21BC50>
[20:32:12]Waiting for inpidual results:
[20:32:12]                      loiter(3): doing nothing for 3s
[20:32:12]result 0 : 0
[20:32:13]      loiter(1): done.
[20:32:13]                              loiter(4): doing nothing for 4s
[20:32:13]result 1 : 10
[20:32:14]              loiter(2): done.
[20:32:14]result 2 : 20
[20:32:15]                      loiter(3): done.
[20:32:15]result 3 : 30
[20:32:17]                              loiter(4): done.
[20:32:17]result 4 : 40

不同机器运行结果可能不同。

示例中设置max_workers=3,所以代码一开始运行,则有三个对象(0,1,2)被执行loiter() 操作; 三秒后,对象0运行结束,得到结果result 0之后,对象3才开始被执行,同理,对象4的执行时间在对象1执行结果result 1打印结束之后。

相关推荐:

Python如何通过future处理并发问题的实例详解

以上是Python中并发future模块的介绍(代码)的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Numpy数组与使用数组模块创建的数组有何不同?Numpy数组与使用数组模块创建的数组有何不同?Apr 24, 2025 pm 03:53 PM

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,内存效率段

Numpy数组的使用与使用Python中的数组模块阵列相比如何?Numpy数组的使用与使用Python中的数组模块阵列相比如何?Apr 24, 2025 pm 03:49 PM

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

CTYPES模块与Python中的数组有何关系?CTYPES模块与Python中的数组有何关系?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero

在Python的上下文中定义'数组”和'列表”。在Python的上下文中定义'数组”和'列表”。Apr 24, 2025 pm 03:41 PM

Inpython,一个“列表” isaversatile,mutableSequencethatCanholdMixedDatateTypes,而“阵列” isamorememory-效率,均质sepersequeSequeSequeReDencErequiringElements.1)

Python列表是可变还是不变的?那Python阵列呢?Python列表是可变还是不变的?那Python阵列呢?Apr 24, 2025 pm 03:37 PM

pythonlistsandArraysareBothable.1)列表Sareflexibleandsupportereceneousdatabutarelessmory-Memory-Empefficity.2)ArraysareMoremoremoremoreMemoremorememorememorememoremorememogeneSdatabutlesserversEversementime,defteringcorcttypecrecttypececeDepeceDyusagetoagetoavoavoiDerrors。

Python vs. C:了解关键差异Python vs. C:了解关键差异Apr 21, 2025 am 12:18 AM

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

Python vs.C:您的项目选择哪种语言?Python vs.C:您的项目选择哪种语言?Apr 21, 2025 am 12:17 AM

选择Python还是C 取决于项目需求:1)如果需要快速开发、数据处理和原型设计,选择Python;2)如果需要高性能、低延迟和接近硬件的控制,选择C 。

达到python目标:每天2小时的力量达到python目标:每天2小时的力量Apr 20, 2025 am 12:21 AM

通过每天投入2小时的Python学习,可以有效提升编程技能。1.学习新知识:阅读文档或观看教程。2.实践:编写代码和完成练习。3.复习:巩固所学内容。4.项目实践:应用所学于实际项目中。这样的结构化学习计划能帮助你系统掌握Python并实现职业目标。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具