程序员能一次写完程序并正常运行的概率很小,基本不超过1%。总会有各种各样的bug需要修正。有的bug很简单,看看错误信息就知道,有的bug很复杂,我们需要知道出错时,哪些变量的值是正确的,哪些变量的值是错误的,因此,需要一整套调试程序的手段来修复bug。这种方法在编程中,叫做调试命令。
第一种方法简单直接粗暴有效,就是用print()把可能有问题的变量打印出来看看:
def foo(s): n = int(s) print('>>> n = %d' % n) return 10 / ndef main(): foo('0') main()
执行后在输出中查找打印的变量值:
$ python err.py >>> n = 0 Traceback (most recent call last): ... ZeroDivisionError: integer division or modulo by zero
用print()最大的坏处是将来还得删掉它,想想程序里到处都是print(),运行结果也会包含很多垃圾信息。所以,我们又有第二种方法。
断言
凡是用print()来辅助查看的地方,都可以用断言(assert)来替代:
def foo(s): n = int(s) assert n != 0, 'n is zero!' return 10 / ndef main(): foo('0')
assert的意思是,表达式n != 0应该是True,否则,根据程序运行的逻辑,后面的代码肯定会出错。
如果断言失败,assert语句本身就会抛出AssertionError:
$ python err.py Traceback (most recent call last): ... AssertionError: n is zero!
程序中如果到处充斥着assert,和print()相比也好不到哪去。不过,启动Python解释器时可以用-O参数来关闭assert:
$ python -O err.py Traceback (most recent call last): ... ZeroDivisionError: division by zero
关闭后,你可以把所有的assert语句当成pass来看。
logging
把print()替换为logging是第3种方式,和assert比,logging不会抛出错误,而且可以输出到文件:
import logging s = '0' n = int(s) logging.info('n = %d' % n) print(10 / n)
logging.info()就可以输出一段文本。运行,发现除了ZeroDivisionError,没有任何信息。怎么回事?
别急,在import logging之后添加一行配置再试试:
import logging logging.basicConfig(level=logging.INFO)
看到输出了:
$ python err.py INFO:root:n = 0 Traceback (most recent call last): File "err.py", line 8, in <module> print(10 / n) ZeroDivisionError: division by zero
这就是logging的好处,它允许你指定记录信息的级别,有debug,info,warning,error等几个级别,当我们指定level=INFO时,logging.debug就不起作用了。同理,指定level=WARNING后,debug和info就不起作用了。这样一来,你可以放心地输出不同级别的信息,也不用删除,最后统一控制输出哪个级别的信息。
logging的另一个好处是通过简单的配置,一条语句可以同时输出到不同的地方,比如console和文件。
以上是Python调试方法有哪些,3分钟告诉你Python调试命令怎么用的详细内容。更多信息请关注PHP中文网其他相关文章!