这篇文章主要介绍了基于PHP实现的多元线性回归模拟曲线算法,结合具体实例形式分析了多元线性回归模拟曲线算法的原理与相关php实现技巧,需要的朋友可以参考下
本文实例讲述了基于PHP实现的多元线性回归模拟曲线算法。分享给大家供大家参考,具体如下:
多元线性回归模型: y = b1x1 + b2x2 + b3x3 +...... +bnxn;
我们根据一组数据: 类似 arr_x = [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]]; arr_y = [5, 10, 15]; 我们最后要求出的是一个数组,包含了从b1 到bn;
方法:利用最小二乘法
公式:我们只用公式的前半部分,也就是用矩阵来计算
式中的X就是arr_x,二维数组我们可以把它看成是一个矩阵,式中的y就是arr_y,也把它看成一个矩阵(5, 10, 15) ,不过应该是竖着写的。
然后可以根据公式我们会发现要用到矩阵的相乘,转置,求逆;所以下面的代码一一给出:
public function get_complement($data, $i, $j) { /* x和y为矩阵data的行数和列数 */ $x = count($data); $y = count($data[0]); /* data2为所求剩余矩阵 */ $data2 =[]; for ($k = 0; $k < $x -1; $k++) { if ($k < $i) { for ($kk = 0; $kk < $y -1; $kk++) { if ($kk < $j) { $data2[$k][$kk] = $data[$k][$kk]; } else { $data2[$k][$kk] = $data[$k][$kk +1]; } } } else { for ($kk = 0; $kk < $y -1; $kk++) { if ($kk < $j) { $data2[$k][$kk] = $data[$k +1][$kk]; } else { $data2[$k][$kk] = $data[$k +1][$kk +1]; } } } } return $data2; } /* 计算矩阵行列式 */ public function cal_det($data) { $ans = 0; if (count($data[0]) === 2) { $ans = $data[0][0] * $data[1][1] - $data[0][1] * $data[1][0]; } else { for ($i = 0; $i < count($data[0]); $i++) { $data_temp = $this->get_complement($data, 0, $i); if ($i % 2 === 0) { $ans = $ans + $data[0][$i] * ($this->cal_det($data_temp)); } else { $ans = $ans - $data[0][$i] * ($this->cal_det($data_temp)); } } } return $ans; } /*计算矩阵的伴随矩阵*/ public function ajoint($data) { $m = count($data); $n = count($data[0]); $data2 =[]; for ($i = 0; $i < $m; $i++) { for ($j = 0; $j < $n; $j++) { if (($i + $j) % 2 === 0) { $data2[$i][$j] = $this->cal_det($this->get_complement($data, $i, $j)); } else { $data2[$i][$j] = - $this->cal_det($this->get_complement($data, $i, $j)); } } } return $this->trans($data2); } /*转置矩阵*/ public function trans($data) { $i = count($data); $j = count($data[0]); $data2 =[]; for ($k2 = 0; $k2 < $j; $k2++) { for ($k1 = 0; $k1 < $i; $k1++) { $data2[$k2][$k1] = $data[$k1][$k2]; } } /*将矩阵转置便可得到伴随矩阵*/ return $data2; } /*求矩阵的逆,输入参数为原矩阵*/ public function inv($data) { $m = count($data); $n = count($data[0]); $data2 =[]; $det_val = $this->cal_det($data); $data2 = $this->ajoint($data); for ($i = 0; $i < $m; $i++) { for ($j = 0; $j < $n; $j++) { $data2[$i][$j] = $data2[$i][$j] / $det_val; } } return $data2; } /*求两矩阵的乘积*/ public function getProduct($data1, $data2) { /*$data1 为左乘矩阵*/ $m1 = count($data1); $n1 = count($data1[0]); $m2 = count($data2); $n2 = count($data2[0]); $data_new =[]; if ($n1 !== $m2) { return false; } else { for ($i = 0; $i <= $m1 -1; $i++) { for ($k = 0; $k <= $n2 -1; $k++) { $data_new[$i][$k] = 0; for ($j = 0; $j <= $n1 -1; $j++) { $data_new[$i][$k] += $data1[$i][$j] * $data2[$j][$k]; } } } } return $data_new; } /*多元线性方程*/ public function getParams($arr_x, $arr_y) { $final =[]; $arr_x_t = $this->trans($arr_x); $result = $this->getProduct($this->getProduct($this->inv($this->getProduct($arr_x_t, $arr_x)), $arr_x_t), $arr_y); foreach ($result as $key => $val) { foreach ($val as $_k => $_v) { $final[] = $_v; } } return $final; }
最后的getParams()
方法就是最后求b参数数组的方法,传入一个二维数组arr_x, 和一个一维数组arr_y就可以了。
这一般用于大数据分析,根据大数据来模拟和预测下面的发展和走势。
PS:这里为大家推荐两款相关模拟曲线工具供大家参考:
在线多项式曲线及曲线函数拟合工具:
http://tools.jb51.net/jisuanqi/create_fun
在线绘制多项式/函数曲线图形工具:
http://tools.jb51.net/jisuanqi/fun_draw
您可能感兴趣的文章:
PHP运用foreach神奇的转换数组(实例讲解)php实例
以上是基于PHP实现的多元线性回归模拟曲线算法php技巧的详细内容。更多信息请关注PHP中文网其他相关文章!

PHP仍然流行的原因是其易用性、灵活性和强大的生态系统。1)易用性和简单语法使其成为初学者的首选。2)与web开发紧密结合,处理HTTP请求和数据库交互出色。3)庞大的生态系统提供了丰富的工具和库。4)活跃的社区和开源性质使其适应新需求和技术趋势。

PHP和Python都是高层次的编程语言,广泛应用于Web开发、数据处理和自动化任务。1.PHP常用于构建动态网站和内容管理系统,而Python常用于构建Web框架和数据科学。2.PHP使用echo输出内容,Python使用print。3.两者都支持面向对象编程,但语法和关键字不同。4.PHP支持弱类型转换,Python则更严格。5.PHP性能优化包括使用OPcache和异步编程,Python则使用cProfile和异步编程。

PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

PHP起源于1994年,由RasmusLerdorf开发,最初用于跟踪网站访问者,逐渐演变为服务器端脚本语言,广泛应用于网页开发。Python由GuidovanRossum于1980年代末开发,1991年首次发布,强调代码可读性和简洁性,适用于科学计算、数据分析等领域。

PHP适合网页开发和快速原型开发,Python适用于数据科学和机器学习。1.PHP用于动态网页开发,语法简单,适合快速开发。2.Python语法简洁,适用于多领域,库生态系统强大。

PHP在现代化进程中仍然重要,因为它支持大量网站和应用,并通过框架适应开发需求。1.PHP7提升了性能并引入了新功能。2.现代框架如Laravel、Symfony和CodeIgniter简化开发,提高代码质量。3.性能优化和最佳实践进一步提升应用效率。

PHPhassignificantlyimpactedwebdevelopmentandextendsbeyondit.1)ItpowersmajorplatformslikeWordPressandexcelsindatabaseinteractions.2)PHP'sadaptabilityallowsittoscaleforlargeapplicationsusingframeworkslikeLaravel.3)Beyondweb,PHPisusedincommand-linescrip

PHP类型提示提升代码质量和可读性。1)标量类型提示:自PHP7.0起,允许在函数参数中指定基本数据类型,如int、float等。2)返回类型提示:确保函数返回值类型的一致性。3)联合类型提示:自PHP8.0起,允许在函数参数或返回值中指定多个类型。4)可空类型提示:允许包含null值,处理可能返回空值的函数。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

WebStorm Mac版
好用的JavaScript开发工具

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。