这篇文章主要为大家详细 介绍了Python多线程中阻塞join与锁Lock的使用误区,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
关于阻塞主线程
join的错误用法
Thread.join() 作用为阻塞主线程,即在子线程未返回的时候,主线程等待其返回然后再继续执行.
join不能与start在循环里连用
以下为错误代码,代码创建了5个线程,然后用一个循环激活线程,激活之后令其阻塞主线程.
threads = [Thread() for i in range(5)] for thread in threads: thread.start() thread.join()
执行过程:
1. 第一次循环中,主线程通过start函数激活线程1,线程1进行计算.
2. 由于start函数不阻塞主线程,在线程1进行运算的同时,主线程向下执行join函数.
3. 执行join之后,主线程被线程1阻塞,在线程1返回结果之前,主线程无法执行下一轮循环.
4. 线程1计算完成之后,解除对主线程的阻塞.
5. 主线程进入下一轮循环,激活线程2并被其阻塞…
如此往复,可以看出,本来应该并发的五个线程,在这里变成了顺序队列,效率和单线程无异.
join的正确用法
使用两个循环分别处理start和join函数.即可实现并发.
threads = [Thread() for i in range(5)] for thread in threads: thread.start() for thread in threads: thread.join()
time.sleep代替join进行调试
之前在一些项目里看到过这样的代码,使用time.sleep代替join手动阻塞主线程.
在所有子线程返回之前,主线程陷入无线循环而不能退出.
for thread in threads: thread.start() while 1: if thread_num == 0: break time.sleep(0.01)
关于线程锁(threading.Lock)
单核CPU+PIL是否还需要锁?
非原子操作 count = count + 1 理论上是线程不安全的.
使用3个线程同时执行上述操作改变全局变量count的值,并查看程序执行结果.
如果结果正确,则表示未出现线程冲突.
使用以下代码测试
# -*- coding: utf-8 -*- import threading import time count = 0 class Counter(threading.Thread): def __init__(self, name): self.thread_name = name super(Counter, self).__init__(name=name) def run(self): global count for i in xrange(100000): count = count + 1 counters = [Counter('thread:%s' % i) for i in range(5)] for counter in counters: counter.start() time.sleep(5) print 'count=%s' % count
运行结果:
count=275552
事实上每次运行结果都不相同且不正确,这证明单核CPU+PIL仍无法保证线程安全,需要加锁.
加锁后的正确代码:
# -*- coding: utf-8 -*- import threading import time count = 0 lock = threading.Lock() class Counter(threading.Thread): def __init__(self, name): self.thread_name = name self.lock = threading.Lock() super(Counter, self).__init__(name=name) def run(self): global count global lock for i in xrange(100000): lock.acquire() count = count + 1 lock.release() counters = [Counter('thread:%s' % i) for i in range(5)] for counter in counters: counter.start() time.sleep(5) print 'count=%s' % count
结果:
count=500000
注意锁的全局性
这是一个简单的Python语法问题,但在逻辑复杂时有可能被忽略.
要保证锁对于多个子线程来说是共用的,即不要在Thread的子类内部创建锁.
以下为错误代码
# -*- coding: utf-8 -*- import threading import time count = 0 # lock = threading.Lock() # 正确的声明位置 class Counter(threading.Thread): def __init__(self, name): self.thread_name = name self.lock = threading.Lock() # 错误的声明位置 super(Counter, self).__init__(name=name) def run(self): global count for i in xrange(100000): self.lock.acquire() count = count + 1 self.lock.release() counters = [Counter('thread:%s' % i) for i in range(5)] for counter in counters: print counter.thread_name counter.start() time.sleep(5) print 'count=%s' % count
相关推荐:
以上是Python多线程中阻塞(join)与锁(Lock)使用误区解析的详细内容。更多信息请关注PHP中文网其他相关文章!

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

SublimeText3汉化版
中文版,非常好用

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能