本篇文章给大家分享的内容是关于python知识分解析掷骰子游戏 ,有着一定的参考价值,有需要的朋友可以参考一下。最近学习了点统计学及python知识,试着分析下掷骰子游戏。骰子按标准6面,分析一次投1颗、2颗、3颗、4颗,投掷10、100、1000、10000次时的结果。
使用工具
Jupyter Notebook 分析利器
matplotlib、pygal 可视化包
1、猜次数
1-6中每个数字出现的次数
# 导入包 import pygal import numpy as np import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus']=False # 用来正常显示负号 from random import randint
# 利用随机数据模拟掷骰子 # 每次显示1-6中的一个数 num_sides = 6 # 骰子的6个面 def getData(N, times): """ 定义函数,获取投掷数据 N: 表示一次用几个骰子投 times:表示总共投几次 """ results = [] for n in range(1,N+1): for roll_num in range(times): result = randint(1,num_sides) results.append(result) return results
# 打印投掷结果 print(getData(1,10)) # 1个骰子掷10次 print(getData(2,5)) # 2个骰子掷5次
[2, 2, 2, 2, 1, 6, 4, 4, 5, 5] [4, 3, 5, 6, 2, 2, 3, 6, 4, 4]
# 分析结果# 统计每个数字出现的次数并显示图片 # N: 表示一次用几个骰子投 # data 表示投掷数据def showResult(N, times): frequencies = [] for value in range(1, num_sides+1): frequency = getData(N, times).count(value) frequencies.append(frequency) # 数据可视化 # 本次利用 pygal 生成SVG格式矢量图 hist = pygal.Bar() hist.title = str(N)+"个骰子掷"+ str(times) +"次的结果" hist.x_labels = ['1','2','3','4','5','6'] hist.x_title = "点数" hist.y_title = "出现次数" hist.add(str(N)+'骰子', frequencies) hist.render_to_file('1-'+str(N)+str(times)+'.svg') # 储存为矢量图
# 一个骰子掷10,100, 1000, 10000次结果分析showResult(1,10) showResult(1,100) showResult(1,1000) showResult(1,10000)
# 2个骰子掷10,100, 1000, 10000次结果分析showResult(2,10) showResult(2,100) showResult(2,1000) showResult(2,10000)
3个骰子、4个骰子就不再截图了。
我们发现在投掷的次数越多,每个数出现的概率越接近,最后趋向于相同。
2、猜大小
每次投掷点数和
# 每次投掷点数和def getData2(N, times): """ 定义函数,获取投掷数据 N: 表示一次用几个骰子投 times:表示总共投几次 """ results = [] for roll_num in range(times): result = 0 for n in range(1,N+1): result += randint(1,num_sides) results.append(result) return results
# 打印投掷结果print(getData2(1,10)) # 1个骰子掷10次print(getData2(2,5)) # 2个骰子掷5次
[4, 3, 6, 2, 5, 4, 5, 3, 6, 2] [6, 10, 5, 8, 7]
# 分析结果# 统计数字和出现的次数并显示图片 # N: 表示一次用几个骰子投 # data 表示投掷数据def showResult2(N, times): frequencies = [] for value in range(N, N*num_sides+1): frequency = getData2(N, times).count(value) frequencies.append(frequency) # 数据可视化 # 本次利用 matplotlib 生成图片 x_num = N*num_sides+1-N idx = np.arange(x_num) width = 0.5 sn = str(N) sm = str(times) x_labels = [str(n) for n in range(N, N*num_sides+1)] # X轴刻度 plt.bar(idx, frequencies, width, color='red', label=sn+'个骰子') plt.xlabel('点数和') plt.ylabel('出现次数') plt.title(sn+'个骰子投掷'+ sm +'次的结果') plt.xticks(idx, x_labels) plt.legend() # 显示图例 plt.show()
1颗骰子猜大小没多大意义,我们直接来分析两骰子的情况。
# 2个骰子掷10,100, 1000, 10000次结果分析showResult2(2,10) showResult2(2,100) showResult2(2,1000) showResult2(2,10000)
# 3个骰子掷10,100, 1000, 10000次结果分析showResult2(3,10) showResult2(3,100) showResult2(3,1000) showResult2(3,10000)
# 4个骰子掷10,100, 1000, 10000次结果分析showResult2(4,10) showResult2(4,100) showResult2(4,1000) showResult2(4,10000)
从上面几图中我们可以看到,当投掷次数足够多时,出现大/小点数出现的概率基本相同,点数大小呈现正态分布的特点。
相关推荐:
以上是python知识分解析掷骰子游戏的详细内容。更多信息请关注PHP中文网其他相关文章!

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

你可以通过使用pyenv、venv和Anaconda来管理不同的Python版本。1)使用pyenv管理多个Python版本:安装pyenv,设置全局和本地版本。2)使用venv创建虚拟环境以隔离项目依赖。3)使用Anaconda管理数据科学项目中的Python版本。4)保留系统Python用于系统级任务。通过这些工具和策略,你可以有效地管理不同版本的Python,确保项目顺利运行。

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基于基于duetoc的iMplation,2)2)他们的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函数函数函数函数构成和稳定性构成和稳定性的操作,制造

数组的同质性对性能的影响是双重的:1)同质性允许编译器优化内存访问,提高性能;2)但限制了类型多样性,可能导致效率低下。总之,选择合适的数据结构至关重要。

到CraftCraftExecutablePythcripts,lollow TheSebestPractices:1)Addashebangline(#!/usr/usr/bin/envpython3)tomakethescriptexecutable.2)setpermissionswithchmodwithchmod xyour_script.3)

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,内存效率段

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

SublimeText3 Linux新版
SublimeText3 Linux最新版

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能