首页 >后端开发 >Python教程 >Numpy数组应该怎么保存与读取

Numpy数组应该怎么保存与读取

php中世界最好的语言
php中世界最好的语言原创
2018-04-09 15:53:223319浏览

这次给大家带来Numpy数组应该怎么保存与读取,Numpy数组保存与读取的注意事项有哪些,下面就是实战案例,一起来看一下。

1. 数组以二进制格式保存

np.save和np.load是读写磁盘数组数据的两个主要函数。默认情况下,数组以未压缩的原始二进制格式保存在扩展名为npy的文件中,以数组a为例

np.save("filename.npy",a)
b = np.load("filename.npy")

利用这种方法,保存文件的后缀名字一定会被置为.npy

2. 存取文本文件

使用 np.savetxt 和 np.loadtxt 只能读写 1 维和 2 维的数组

np.savetxt:将数组写入以某种分隔符隔开的文本文件中

np.loadtxt:指定某种分隔符,将文本文件读入到数组中

np.savetxt("filename.txt",a)
b = numpy.loadtxt("filename.txt", delimiter=',')

3. 保存为二进制文件

使用数组的 tofile 函数可以方便地将数组中数据以二进制的格式写进文件

a.tofile("filename.bin")
b = np.fromfile("filename.bin",dtype = **)

该方法与np.save有几点区别:

tofile函数只能将数组保存为二进制文件,文件后缀名没有固定要求。这种保存方法对数据读取有要求,np.fromfile 需要手动指定读出来的数据的的dtype,如果指定的格式与保存时的不一致,则读出来的就是错误的数据。

tofile函数不能保存当前数据的行列信息,不管数组的排列顺序是C语言格式的还是Fortran语言格式,统一使用C语言格式输出。因此使用 np.fromfile 读出来的数据是一维数组,需要利用reshape指定行列信息。

例如下面的例子所示:

>>> a = np.arange(0,12)
>>> a.shape = 3,4
>>> a
array([[ 0, 1, 2, 3],
    [ 4, 5, 6, 7],
    [ 8, 9, 10, 11]])
>>> a.tofile("a.bin")
>>> b = np.fromfile("a.bin", dtype=np.float) # 按照float类型读入数据
>>> b # 读入的数据是错误的
array([ 2.12199579e-314,  6.36598737e-314,  1.06099790e-313,
     1.48539705e-313,  1.90979621e-313,  2.33419537e-313])
>>> a.dtype # 查看a的dtype
dtype('int32')
>>> b = np.fromfile("a.bin", dtype=np.int32) # 按照int32类型读入数据
>>> b # 数据是一维的
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
>>> b.shape = 3, 4 # 按照a的shape修改b的shape
>>> b
array([[ 0, 1, 2, 3],
    [ 4, 5, 6, 7],
    [ 8, 9, 10, 11]])

相信看了本文案例你已经掌握了方法,更多精彩请关注php中文网其它相关文章!

推荐阅读:

Python Numpy如何操作数组和矩阵

Python实现求解最大公约数的方法

以上是Numpy数组应该怎么保存与读取的详细内容。更多信息请关注PHP中文网其他相关文章!

声明:
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn