本篇文章给大家分享的内容是python3将python代码打包成exe文件的方法,有需要的朋友可以参考一下
基本配置:
Anaconda 3 4.2.0(python3.5)
注意:
1、代码存放至全英文目录下;
2、电脑管家之类的安全软件暂时关闭(因为发布出来的exe文件属于可执行文件,电脑管家可能会认为发布出来的文件为病毒,自动删除)
具体操作步骤如下:
1、写好的python代码,存放至全英文的目录下:
import keras from keras.models import Sequential import numpy as np import pandas as pd from keras.layers import Dense import random import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data from tkinter import filedialog import tkinter.messagebox #这个是消息框,对话框的关键 file_path = filedialog.askdirectory() mnist = input_data.read_data_sets(file_path, validation_size=0) #随机挑选其中一个手写数字并画图 num = random.randint(1, len(mnist.train.images)) img = mnist.train.images[num] plt.imshow(img.reshape((28, 28)), cmap='Greys_r') plt.show() x_train = mnist.train.images y_train = mnist.train.labels x_test = mnist.test.images y_test = mnist.test.labels #reshaping the x_train, y_train, x_test and y_test to conform to MLP input and output dimensions x_train = np.reshape(x_train, (x_train.shape[0], -1)) x_test = np.reshape(x_test, (x_test.shape[0], -1)) y_train = pd.get_dummies(y_train) y_test = pd.get_dummies(y_test) #performing one-hot encoding on target variables for train and test y_train=np.array(y_train) y_test=np.array(y_test) #defining model with one input layer[784 neurons], 1 hidden layer[784 neurons] with dropout rate 0.4 and 1 output layer [10 #neurons] model=Sequential() model.add(Dense(784, input_dim=784, activation='relu')) keras.layers.core.Dropout(rate=0.4) model.add(Dense(10,input_dim=784,activation='softmax')) # compiling model using adam optimiser and accuracy as metric model.compile(loss='categorical_crossentropy', optimizer="adam", metrics=['accuracy']) # fitting model and performing validation model.fit(x_train, y_train, epochs=20, batch_size=200, validation_data=(x_test, y_test)) y_test1 = pd.DataFrame(model.predict(x_test, batch_size=200)) y_pre = y_test1.idxmax(axis = 1) result = pd.DataFrame({'test': y_test, 'pre': y_pre}) tkinter.messagebox.showinfo('Message', 'Completed!')
2、通过命令行,按照pyinstaller
pip install pyinstaller
3、命令行打包文件
先切换路径至python代码所在目录,执行语句:
pyinstaller -F -w xxx.py
4、等待打包完成,会生成一个build文件夹和一个dist文件夹,exe可执行文件就在dist文件夹里,如果程序引用有资源,则要把资源文件放在这个exe正确的相对目录下。
5、运行exe文件。
有时运行文件会出错,此时需要拷贝下图所示的文件夹至exe文件所在目录
运行成功!
相关推荐:
Python打包文件夹的方法小结(zip,tar,tar.gz等)
以上是python3将python代码打包成exe文件的方法的详细内容。更多信息请关注PHP中文网其他相关文章!

Python的灵活性体现在多范式支持和动态类型系统,易用性则源于语法简洁和丰富的标准库。1.灵活性:支持面向对象、函数式和过程式编程,动态类型系统提高开发效率。2.易用性:语法接近自然语言,标准库涵盖广泛功能,简化开发过程。

Python因其简洁与强大而备受青睐,适用于从初学者到高级开发者的各种需求。其多功能性体现在:1)易学易用,语法简单;2)丰富的库和框架,如NumPy、Pandas等;3)跨平台支持,可在多种操作系统上运行;4)适合脚本和自动化任务,提升工作效率。

可以,在每天花费两个小时的时间内学会Python。1.制定合理的学习计划,2.选择合适的学习资源,3.通过实践巩固所学知识,这些步骤能帮助你在短时间内掌握Python。

Python适合快速开发和数据处理,而C 适合高性能和底层控制。1)Python易用,语法简洁,适用于数据科学和Web开发。2)C 性能高,控制精确,常用于游戏和系统编程。

学习Python所需时间因人而异,主要受之前的编程经验、学习动机、学习资源和方法及学习节奏的影响。设定现实的学习目标并通过实践项目学习效果最佳。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

禅工作室 13.0.1
功能强大的PHP集成开发环境

记事本++7.3.1
好用且免费的代码编辑器

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

WebStorm Mac版
好用的JavaScript开发工具

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),