搜索
首页web前端js教程JavaScript中关于 v8 排序源码的问题

JavaScript中关于 v8 排序源码的问题

Oct 24, 2017 am 09:57 AM
javascriptjs问题

JavaScript 专题系列第二十篇,也是最后一篇,解读 v8 排序源码

前言

v8 是 Chrome 的 JavaScript 引擎,其中关于数组的排序完全采用了 JavaScript 实现。

排序采用的算法跟数组的长度有关,当数组长度小于等于 10 时,采用插入排序,大于 10 的时候,采用快速排序。(当然了,这种说法并不严谨)。

我们先来看看插入排序和快速排序。

插入排序

原理

将第一个元素视为有序序列,遍历数组,将之后的元素依次插入这个构建的有序序列中。

图示

JavaScript中关于 v8 排序源码的问题

实现

function insertionSort(arr) {
    for (var i = 1; i < arr.length; i++) {
        var element = arr[i];
        for (var j = i - 1; j >= 0; j--) {
            var tmp = arr[j];
            var order = tmp - element;
            if (order > 0) {
                arr[j + 1] = tmp;
            } else {
                break;
            }
        }
        arr[j + 1] = element;
    }
    return arr;
}

var arr = [6, 5, 4, 3, 2, 1];
console.log(insertionSort(arr));

时间复杂度

时间复杂度是指执行算法所需要的计算工作量,它考察当输入值大小趋近无穷时的情况,一般情况下,算法中基本操作重复执行的次数是问题规模 n 的某个函数。

最好情况:数组升序排列,时间复杂度为:O(n)

最坏情况:数组降序排列,时间复杂度为:O(n²)

稳定性

稳定性,是指相同的元素在排序后是否还保持相对的位置。

要注意的是对于不稳定的排序算法,只要举出一个实例,即可说明它的不稳定性;而对于稳定的排序算法,必须对算法进行分析从而得到稳定的特性。

比如 [3, 3, 1],排序后,还是 [3, 3, 1],但是其实是第二个 3 在 第一个 3 前,那这就是不稳定的排序算法。

插入排序是稳定的算法。

优势

当数组是快要排序好的状态或者问题规模比较小的时候,插入排序效率更高。这也是为什么 v8 会在数组长度小于等于 10 的时候采用插入排序。

快速排序

原理

  1. 选择一个元素作为"基准"

  2. 小于"基准"的元素,都移到"基准"的左边;大于"基准"的元素,都移到"基准"的右边。

  3. 对"基准"左边和右边的两个子集,不断重复第一步和第二步,直到所有子集只剩下一个元素为止。

示例

示例和下面的实现方式来源于阮一峰老师的《快速排序(Quicksort)的Javascript实现》

以数组 [85, 24, 63, 45, 17, 31, 96, 50] 为例:

第一步,选择中间的元素 45 作为"基准"。(基准值可以任意选择,但是选择中间的值比较容易理解。)

JavaScript中关于 v8 排序源码的问题

第二步,按照顺序,将每个元素与"基准"进行比较,形成两个子集,一个"小于45",另一个"大于等于45"。

JavaScript中关于 v8 排序源码的问题

第三步,对两个子集不断重复第一步和第二步,直到所有子集只剩下一个元素为止。

JavaScript中关于 v8 排序源码的问题

实现

var quickSort = function(arr) {
  if (arr.length <= 1) { return arr; }
    // 取数组的中间元素作为基准
  var pivotIndex = Math.floor(arr.length / 2);
  var pivot = arr.splice(pivotIndex, 1)[0];

  var left = [];
  var right = [];

  for (var i = 0; i < arr.length; i++){
    if (arr[i] < pivot) {
      left.push(arr[i]);
    } else {
      right.push(arr[i]);
    }
  }
  return quickSort(left).concat([pivot], quickSort(right));
};

然而这种实现方式需要额外的空间用来储存左右子集,所以还有一种原地(in-place)排序的实现方式。

图示

我们来看看原地排序的实现图示:

JavaScript中关于 v8 排序源码的问题

为了让大家看明白快速排序的原理,我调慢了执行速度。

在这张示意图里,基准的取值规则是取最左边的元素,黄色代表当前的基准,绿色代表小于基准的元素,紫色代表大于基准的元素。

我们会发现,绿色的元素会紧挨在基准的右边,紫色的元素会被移到后面,然后交换基准和绿色的最后一个元素,此时,基准处于正确的位置,即前面的元素都小于基准值,后面的元素都大于基准值。然后再对前面的和后面的多个元素取基准,做排序。

in-place 实现

function quickSort(arr) {
    // 交换元素
    function swap(arr, a, b) {
        var temp = arr[a];
        arr[a] = arr[b];
        arr[b] = temp;
    }

    function partition(arr, left, right) {
        var pivot = arr[left];
        var storeIndex = left;

        for (var i = left + 1; i <= right; i++) {
            if (arr[i] < pivot) {
                swap(arr, ++storeIndex, i);
            }
        }

        swap(arr, left, storeIndex);

        return storeIndex;
    }

    function sort(arr, left, right) {
        if (left < right) {
            var storeIndex = partition(arr, left, right);
            sort(arr, left, storeIndex - 1);
            sort(arr, storeIndex + 1, right);
        }
    }

    sort(arr, 0, arr.length - 1);

    return arr;
}

console.log(quickSort(6, 7, 3, 4, 1, 5, 9, 2, 8))

稳定性

快速排序是不稳定的排序。如果要证明一个排序是不稳定的,你只用举出一个实例就行。

所以我们举一个呗~

就以数组 [1, 2, 3, 3, 4, 5] 为例,因为基准的选择不确定,假如选定了第三个元素(也就是第一个 3) 为基准,所有小于 3 的元素在前面,大于等于 3 的在后面,排序的结果没有问题。可是如果选择了第四个元素(也就是第二个 3 ),小于 3 的在基准前面,大于等于 3 的在基准后面,第一个 3 就会被移动到 第二个 3 后面,所以快速排序是不稳定的排序。

时间复杂度

阮一峰老师的实现中,基准取的是中间元素,而原地排序中基准取最左边的元素。快速排序的关键点就在于基准的选择,选取不同的基准时,会有不同性能表现。

快速排序的时间复杂度最好为 O(nlogn),可是为什么是 nlogn 呢?来一个并不严谨的证明:

在最佳情况下,每一次都平分整个数组。假设数组有 n 个元素,其递归的深度就为 log2n + 1,时间复杂度为 O(n)[(log2n + 1)],因为时间复杂度考察当输入值大小趋近无穷时的情况,所以会忽略低阶项,时间复杂度为:o(nlog2n)。

如果一个程序的运行时间是对数级的,则随着 n 的增大程序会渐渐慢下来。如果底数是 10,lg1000 等于 3,如果 n 为 1000000,lgn 等于 6,仅为之前的两倍。如果底数为 2,log21000 的值约为 10,log21000000 的值约为 19,约为之前的两倍。我们可以发现任意底数的一个对数函数其实都相差一个常数倍而已。所以我们认为 O(logn)已经可以表达所有底数的对数了,所以时间复杂度最后为: O(nlogn)。

而在最差情况下,如果对一个已经排序好的数组,每次选择基准元素时总是选择第一个元素或者最后一个元素,那么每次都会有一个子集是空的,递归的层数将达到 n,最后导致算法的时间复杂度退化为 O(n²)。

这也充分说明了一个基准的选择是多么的重要,而 v8 为了提高性能,就对基准的选择做了很多优化。

v8 基准选择

v8 选择基准的原理是从头和尾之外再选择一个元素,然后三个值排序取中间值。

当数组长度大于 10 但是小于 1000 的时候,取中间位置的元素,实现代码为:

// 基准的下标
// >> 1 相当于除以 2 (忽略余数)
third_index = from + ((to - from) >> 1);

当数组长度大于 1000 的时候,每隔 200 ~ 215 个元素取一个值,然后将这些值进行排序,取中间值的下标,实现的代码为:

// 简单处理过
function GetThirdIndex(a, from, to) {
    var t_array = new Array();

    // & 位运算符
    var increment = 200 + ((to - from) & 15);

    var j = 0;
    from += 1;
    to -= 1;

    for (var i = from; i < to; i += increment) {
        t_array[j] = [i, a[i]];
        j++;
    }
    // 对随机挑选的这些值进行排序
    t_array.sort(function(a, b) {
        return comparefn(a[1], b[1]);
    });
    // 取中间值的下标
    var third_index = t_array[t_array.length >> 1][0];
    return third_index;
}

也许你会好奇 200 + ((to - from) & 15) 是什么意思?

& 表示是按位与,对整数操作数逐位执行布尔与操作。只有两个操作数中相对应的位都是 1,结果中的这一位才是 1。

15 & 127 为例:

15 二进制为: (0000 1111)

127 二进制为:(1111 1111)

按位与结果为:(0000 1111)= 15

所以 15 & 127 的结果为 15

注意 15 的二进制为: 1111,这就意味着任何和 15 按位与的结果都会小于或者等于 15,这才实现了每隔 200 ~ 215 个元素取一个值。

v8 源码

终于到了看源码的时刻!源码地址为:https://github.com/v8/v8/blob/master/src/js/array.js#L758。

function InsertionSort(a, from, to) {
    for (var i = from + 1; i < to; i++) {
        var element = a[i];
        for (var j = i - 1; j >= from; j--) {
            var tmp = a[j];
            var order = comparefn(tmp, element);
            if (order > 0) {
                a[j + 1] = tmp;
            } else {
                break;
            }
        }
        a[j + 1] = element;
    }
};


function QuickSort(a, from, to) {

    var third_index = 0;
    while (true) {
            // Insertion sort is faster for short arrays.
        if (to - from <= 10) {
            InsertionSort(a, from, to);
            return;
        }
        if (to - from > 1000) {
            third_index = GetThirdIndex(a, from, to);
        } else {
            third_index = from + ((to - from) >> 1);
        }
        // Find a pivot as the median of first, last and middle element.
        var v0 = a[from];
        var v1 = a[to - 1];
        var v2 = a[third_index];

        var c01 = comparefn(v0, v1);
        if (c01 > 0) {
            // v1 < v0, so swap them.
            var tmp = v0;
            v0 = v1;
            v1 = tmp;
        } // v0 <= v1.
        var c02 = comparefn(v0, v2);
        if (c02 >= 0) {
            // v2 <= v0 <= v1.
            var tmp = v0;
            v0 = v2;
            v2 = v1;
            v1 = tmp;
        } else {
            // v0 <= v1 && v0 < v2
            var c12 = comparefn(v1, v2);
            if (c12 > 0) {
                // v0 <= v2 < v1
                var tmp = v1;
                v1 = v2;
                v2 = tmp;
            }
        }

        // v0 <= v1 <= v2
        a[from] = v0;
        a[to - 1] = v2;

        var pivot = v1;

        var low_end = from + 1; // Upper bound of elements lower than pivot.
        var high_start = to - 1; // Lower bound of elements greater than pivot.

        a[third_index] = a[low_end];
        a[low_end] = pivot;

        // From low_end to i are elements equal to pivot.
        // From i to high_start are elements that haven't been compared yet.

        partition: for (var i = low_end + 1; i < high_start; i++) {
            var element = a[i];
            var order = comparefn(element, pivot);
            if (order < 0) {
                a[i] = a[low_end];
                a[low_end] = element;
                low_end++;
            } else if (order > 0) {
                do {
                    high_start--;
                    if (high_start == i) break partition;
                    var top_elem = a[high_start];
                    order = comparefn(top_elem, pivot);
                } while (order > 0);

                a[i] = a[high_start];
                a[high_start] = element;
                if (order < 0) {
                    element = a[i];
                    a[i] = a[low_end];
                    a[low_end] = element;
                    low_end++;
                }
            }
        }


        if (to - high_start < low_end - from) {
            QuickSort(a, high_start, to);
            to = low_end;
        } else {
            QuickSort(a, from, low_end);
            from = high_start;
        }
    }
}

var arr = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0];

function comparefn(a, b) {
    return a - b
}

QuickSort(arr, 0, arr.length)
console.log(arr)

我们以数组 [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] 为例,分析执行的过程。

1.执行 QuickSort 函数 参数 from 值为 0,参数 to 的值 11。

2.10 c7ba78f8f51b7321cde06a9f72ed98cf> 1) = 5,基准值 a[5] 为 5。

3.比较 a[0] a[10] a[5] 的值,然后根据比较结果修改数组,数组此时为 [0, 9, 8, 7, 6, 5, 4, 3, 2, 1, 10]

4.将基准值和数组的第(from + 1)个即数组的第二个元素互换,此时数组为 [0, 5, 8, 7, 6, 9, 4, 3, 2, 1, 10],此时在基准值 5 前面的元素肯定是小于 5 的,因为第三步已经做了一次比较。后面的元素是未排序的。

我们接下来要做的就是把后面的元素中小于 5 的全部移到 5 的前面。

5.然后我们进入 partition 循环,我们依然以这个数组为例,单独抽出来写个 demo 讲一讲

// 假设代码执行到这里,为了方便演示,我们直接设置 low_end 等变量的值
// 可以直接复制到浏览器中查看数组变换效果
var a = [0, 5, 8, 7, 6, 9, 4, 3, 2, 1, 10]
var low_end = 1;
var high_start = 10;
var pivot = 5;

console.log('起始数组为', a)

partition: for (var i = low_end + 1; i < high_start; i++) {

    var element = a[i];
    console.log('循环当前的元素为:', a[i])
    var order = element - pivot;

    if (order < 0) {
        a[i] = a[low_end];
        a[low_end] = element;
        low_end++;
        console.log(a)
    }
    else if (order > 0) {
        do {
            high_start--;
            if (high_start == i) break partition;
            var top_elem = a[high_start];
            order = top_elem - pivot;
        } while (order > 0);

        a[i] = a[high_start];
        a[high_start] = element;

        console.log(a)

        if (order < 0) {
            element = a[i];
            a[i] = a[low_end];
            a[low_end] = element;
            low_end++;
        }
        console.log(a)
    }
}

console.log('最后的结果为', a)
console.log(low_end)
console.log(high_start)

6.此时数组为 [0, 5, 8, 7, 6, 9, 4, 3, 2, 1, 10],循环从第三个元素开始,a[i] 的值为 8,因为大于基准值 5,即 order > 0,开始执行 do while 循环,do while 循环的目的在于倒序查找元素,找到第一个小于基准值的元素,然后让这个元素跟 a[i] 的位置交换。
第一个小于基准值的元素为 1,然后 1 与 8 交换,数组变成  [0, 5, 1, 7, 6, 9, 4, 3, 2, 8, 10]。high_start 的值是为了记录倒序查找到哪里了。

7.此时 a[i] 的值变成了 1,然后让 1 跟 基准值 5 交换,数组变成了 [0, 1, 5, 7, 6, 9, 4, 3, 2, 8, 10],low_end 的值加 1,low_end 的值是为了记录基准值的所在位置。

8.循环接着执行,遍历第四个元素 7,跟第 6、7 的步骤一致,数组先变成 [0, 1, 5, 2, 6, 9, 4, 3, 7, 8, 10],再变成 [0, 1, 2, 5, 6, 9, 4, 3, 7, 8, 10]

9.遍历第五个元素 6,跟第 6、7 的步骤一致,数组先变成 [0, 1, 2, 5, 3, 9, 4, 6, 7, 8, 10],再变成 [0, 1, 2, 3, 5, 9, 4, 6, 7, 8, 10]

10.遍历第六个元素 9,跟第 6、7 的步骤一致,数组先变成 [0, 1, 2, 3, 5, 4, 9, 6, 7, 8, 10],再变成 [0, 1, 2, 3, 4, 5, 9, 6, 7, 8, 10]

11.在下一次遍历中,因为 i == high_start,意味着正序和倒序的查找终于找到一起了,后面的元素肯定都是大于基准值的,此时退出循环

12.遍历后的结果为 [0, 1, 2, 3, 4, 5, 9, 6, 7, 8, 10],在基准值 5 前面的元素都小于 5,后面的元素都大于 5,然后我们分别对两个子集进行 QuickSort

13.此时 low_end 值为 5,high_start 值为 6,to 的值依然是 10,from 的值依然是 0,to - high_start < low_end - from 的结果为 true,我们对 QuickSort(a, 6, 10),即对后面的元素进行排序,但是注意,在新的 QuickSort 中,因为 from - to 的值小于 10,所以这一次其实是采用了插入排序。所以准确的说,当数组长度大于 10 的时候,v8 采用了快速排序和插入排序的混合排序方法。

14.然后 to = low_end 即设置 to 为 5,因为 while(true) 的原因,会再执行一遍,to - from 的值为 5,执行 InsertionSort(a, 0, 5),即对基准值前面的元素执行一次插入排序。

15.因为在 to - from <= 10 的判断中,有 return 语句,所以 while 循环结束。

16.v8 在对数组进行了一次快速排序后,然后对两个子集分别进行了插入排序,最终修改数组为正确排序后的数组。

比较

最后来张示意图感受下插入排序和快速排序:

JavaScript中关于 v8 排序源码的问题

图片来自于 https://www.toptal.com/developers/sorting-algorithms

专题系列

JavaScript专题系列目录地址:https://github.com/mqyqingfeng/Blog。

JavaScript专题系列预计写二十篇左右,主要研究日常开发中一些功能点的实现,比如防抖、节流、去重、类型判断、拷贝、最值、扁平、柯里、递归、乱序、排序等,特点是研(chao)究(xi) underscore 和 jQuery 的实现方式。


以上是JavaScript中关于 v8 排序源码的问题的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python vs. JavaScript:您应该学到哪种语言?Python vs. JavaScript:您应该学到哪种语言?May 03, 2025 am 12:10 AM

选择Python还是JavaScript应基于职业发展、学习曲线和生态系统:1)职业发展:Python适合数据科学和后端开发,JavaScript适合前端和全栈开发。2)学习曲线:Python语法简洁,适合初学者;JavaScript语法灵活。3)生态系统:Python有丰富的科学计算库,JavaScript有强大的前端框架。

JavaScript框架:为现代网络开发提供动力JavaScript框架:为现代网络开发提供动力May 02, 2025 am 12:04 AM

JavaScript框架的强大之处在于简化开发、提升用户体验和应用性能。选择框架时应考虑:1.项目规模和复杂度,2.团队经验,3.生态系统和社区支持。

JavaScript,C和浏览器之间的关系JavaScript,C和浏览器之间的关系May 01, 2025 am 12:06 AM

引言我知道你可能会觉得奇怪,JavaScript、C 和浏览器之间到底有什么关系?它们之间看似毫无关联,但实际上,它们在现代网络开发中扮演着非常重要的角色。今天我们就来深入探讨一下这三者之间的紧密联系。通过这篇文章,你将了解到JavaScript如何在浏览器中运行,C 在浏览器引擎中的作用,以及它们如何共同推动网页的渲染和交互。JavaScript与浏览器的关系我们都知道,JavaScript是前端开发的核心语言,它直接在浏览器中运行,让网页变得生动有趣。你是否曾经想过,为什么JavaScr

node.js流带打字稿node.js流带打字稿Apr 30, 2025 am 08:22 AM

Node.js擅长于高效I/O,这在很大程度上要归功于流。 流媒体汇总处理数据,避免内存过载 - 大型文件,网络任务和实时应用程序的理想。将流与打字稿的类型安全结合起来创建POWE

Python vs. JavaScript:性能和效率注意事项Python vs. JavaScript:性能和效率注意事项Apr 30, 2025 am 12:08 AM

Python和JavaScript在性能和效率方面的差异主要体现在:1)Python作为解释型语言,运行速度较慢,但开发效率高,适合快速原型开发;2)JavaScript在浏览器中受限于单线程,但在Node.js中可利用多线程和异步I/O提升性能,两者在实际项目中各有优势。

JavaScript的起源:探索其实施语言JavaScript的起源:探索其实施语言Apr 29, 2025 am 12:51 AM

JavaScript起源于1995年,由布兰登·艾克创造,实现语言为C语言。1.C语言为JavaScript提供了高性能和系统级编程能力。2.JavaScript的内存管理和性能优化依赖于C语言。3.C语言的跨平台特性帮助JavaScript在不同操作系统上高效运行。

幕后:什么语言能力JavaScript?幕后:什么语言能力JavaScript?Apr 28, 2025 am 12:01 AM

JavaScript在浏览器和Node.js环境中运行,依赖JavaScript引擎解析和执行代码。1)解析阶段生成抽象语法树(AST);2)编译阶段将AST转换为字节码或机器码;3)执行阶段执行编译后的代码。

Python和JavaScript的未来:趋势和预测Python和JavaScript的未来:趋势和预测Apr 27, 2025 am 12:21 AM

Python和JavaScript的未来趋势包括:1.Python将巩固在科学计算和AI领域的地位,2.JavaScript将推动Web技术发展,3.跨平台开发将成为热门,4.性能优化将是重点。两者都将继续在各自领域扩展应用场景,并在性能上有更多突破。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。