首页 >Java >java教程 >Java实现背包问题求解的实例代码

Java实现背包问题求解的实例代码

黄舟
黄舟原创
2017-10-18 09:46:291734浏览

这篇文章主要介绍了Java背包问题求解实例代码,其中涉及两种背包:01和完全背包。分别讲述了两种背包的思路和实现方法,具有一定参考价值,需要的朋友可以了解下。

背包问题主要是指一个给定容量的背包、若干具有一定价值和重量的物品,如何选择物品放入背包使物品的价值最大。其中又分01背包和无限背包,这里主要讨论01背包,即每个物品最多放一个。而无限背包可以转化为01背包。

先说一下算法的主要思想,利用动态规划来解决。每次遍历到的第i个物品,根据w[i]和v[i]来确定是否需要将该物品放入背包中。即对于给定的n个物品,设v[i]、w[i]分别为第i个物品的价值和重量,C为背包的容量。再令v[i][j]表示在前i个物品中能够装入容量为j的背包中的最大价值。则我们有下面的结果:

(1),v[i][0]=v[0][j]=0;
(2),v[i][j]=v[i-1][j] 当w[i]>j
(3),v[i][j]=max{v[i-1][j],v[i-1][j-w[i]]+v[i]} 当j>=w[i]

好的,我们的算法就是基于此三个结论式。

一、01背包:

1、二维数组法


public class sf { 
  public static void main(String[] args) { 
    // TODO Auto-generated method stub 
    int[] weight = {3,5,2,6,4}; //物品重量 
    int[] val = {4,4,3,5,3}; //物品价值 
    int m = 12; //背包容量 
    int n = val.length; //物品个数 
    int[][] f = new int[n+1][m+1]; //f[i][j]表示前i个物品能装入容量为j的背包中的最大价值 
    int[][] path = new int[n+1][m+1]; 
    //初始化第一列和第一行 
    for(int i=0;i<f.length;i++){ 
      f[i][0] = 0; 
    } 
    for(int i=0;i<f[0].length;i++){ 
      f[0][i] = 0; 
    } 
    //通过公式迭代计算 
    for(int i=1;i<f.length;i++){ 
      for(int j=1;j<f[0].length;j++){ 
        if(weight[i-1]>j) 
          f[i][j] = f[i-1][j]; 
        else{ 
          if(f[i-1][j]<f[i-1][j-weight[i-1]]+val[i-1]){ 
            f[i][j] = f[i-1][j-weight[i-1]]+val[i-1]; 
            path[i][j] = 1; 
          }else{ 
            f[i][j] = f[i-1][j]; 
          } 
          //f[i][j] = Math.max(f[i-1][j], f[i-1][j-weight[i-1]]+val[i-1]); 
        } 
      } 
    } 
    for(int i=0;i<f.length;i++){ 
      for(int j=0;j<f[0].length;j++){ 
        System.out.print(f[i][j]+" "); 
      } 
      System.out.println(); 
    } 
    int i=f.length-1; 
    int j=f[0].length-1; 
    while(i>0&&j>0){ 
      if(path[i][j] == 1){ 
        System.out.print("第"+i+"个物品装入 "); 
        j -= weight[i-1]; 
      } 
      i--; 
    } 
  } 
}

输出:


0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 4 4 4 4 4 4 4 4 4 4 
0 0 0 4 4 4 4 4 8 8 8 8 8 
0 0 3 4 4 7 7 7 8 8 11 11 11 
0 0 3 4 4 7 7 7 8 9 11 12 12 
0 0 3 4 4 7 7 7 8 10 11 12 12 
第4个物品装入 第3个物品装入 第1个物品装入

以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。

先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。

伪代码如下:


for i=1..N
  for v=V..0
    f[v]=max{f[v],f[v-c[i]]+w[i]};

其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。

我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同。

如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。

如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0。

为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。

2、一维数组法(无须装满)


public class sf { 
  public static void main(String[] args) { 
    // TODO Auto-generated method stub 
    int[] weight = {3,5,2,6,4}; //物品重量 
    int[] val = {4,4,3,5,3}; //物品价值 
    int m = 12; //背包容量 
    int n = val.length; //物品个数 
    int[] f = new int[m+1]; 
    for(int i=0;i<f.length;i++){   //不必装满则初始化为0 
      f[i] = 0; 
    } 
    for(int i=0;i<n;i++){ 
      for(int j=f.length-1;j>=weight[i];j--){ 
        f[j] = Math.max(f[j], f[j-weight[i]]+val[i]); 
      } 
    } 
    for(int i=0;i<f.length;i++){ 
      System.out.print(f[i]+" "); 
    } 
    System.out.println(); 
    System.out.println("最大价值为"+f[f.length-1]); 
  } 
}

输出


0 0 3 4 4 7 7 7 8 10 11 12 12 
最大价值为12

3、一维数组法(必须装满)


public class sf { 
  public static void main(String[] args) { 
    // TODO Auto-generated method stub 
    int[] weight = {3,5,2,6,4}; //物品重量 
    int[] val = {4,4,3,5,3}; //物品价值 
    int m = 12; //背包容量 
    int n = val.length; //物品个数 
    int[] f = new int[m+1]; 
    for(int i=1;i<f.length;i++){   //必装满则f[0]=0,f[1...m]都初始化为无穷小 
      f[i] = Integer.MIN_VALUE; 
    } 
    for(int i=0;i<n;i++){ 
      for(int j=f.length-1;j>=weight[i];j--){ 
        f[j] = Math.max(f[j], f[j-weight[i]]+val[i]); 
      } 
    } 
    for(int i=0;i<f.length;i++){ 
      System.out.print(f[i]+" "); 
    } 
    System.out.println(); 
    System.out.println("最大价值为"+f[f.length-1]); 
  } 
}

输出


0 -2147483648 3 4 3 7 6 7 8 10 11 12 11 
最大价值为11

二、完全背包

有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

但我们有更优的O(VN)的算法。

O(VN)的算法

这个算法使用一维数组,先看伪代码:


for i=1..N
  for v=0..V
    f[v]=max{f[v],f[v-cost]+weight}

你会发现,这个伪代码与P01的伪代码只有v的循环次序不同而已。


public class test{ 
   public static void main(String[] args){ 
      int[] weight = {3,4,6,2,5}; 
      int[] val = {6,8,7,5,9}; 
      int maxw = 10; 
      int[] f = new int[maxw+1]; 
      for(int i=0;i<f.length;i++){ 
        f[i] = 0; 
      } 
      for(int i=0;i<val.length;i++){ 
        for(int j=weight[i];j<f.length;j++){ 
          f[j] = Math.max(f[j], f[j-weight[i]]+val[i]); 
        } 
      } 
      System.out.println(f[maxw]); 
   } 
  }

输出


25

总结

以上是Java实现背包问题求解的实例代码的详细内容。更多信息请关注PHP中文网其他相关文章!

声明:
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn