首页 >后端开发 >Python教程 >Python中浮点数的原理以及运算详解

Python中浮点数的原理以及运算详解

黄舟
黄舟原创
2017-10-12 10:56:443209浏览

这篇文章主要介绍了Python中的浮点数原理与运算分析,结合实例形式分析了Python浮点数操作的常见错误,并简单解释了浮点数运算的原理与比较运算实现方法,需要的朋友可以参考下

本文实例讲述了Python中的浮点数原理与运算。分享给大家供大家参考,具体如下:

先看一个违反直觉的例子:


>>> s = 0.
>>> for i in range(10): s += .1
>>> s
0.9999999999999999
# 错误被累加

再看一个更为普遍,直接影响判断逻辑的例子:


>>> from math import sqrt
>>> a = sqrt(2)
>>> a*a == a
False

之所以会出现以上的结果,在于 Python (更准确地说是计算机硬件体系结构)对浮点数的表示,我们来看计算机(基于二进制)对十进制小数 0.1 的表示,十进制小数向二进制小数转换的方法请见 Python十进制小数与二进制小数相互转换。将十进制小数 0.1 转换为二进制时的结果为 0.0001100110011001....,无限循环,计算机无法展示无限的结果,只能对结果进行截断,这是浮点数精度问题的根源。

“==” on floats

基于以上的考虑,当我们进行浮点数的相等比较时,要特别小心,直接使用 == 是有问题的,一种通用的做法即是,不是检测浮点数是否相等,而是检测二者是否足够接近,


>>> a = sqrt(2)
>>> abs(a*a-2) < epsilon
# 判断是否小于某一小量

以上是Python中浮点数的原理以及运算详解的详细内容。更多信息请关注PHP中文网其他相关文章!

声明:
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn