搜索
首页后端开发php教程程序员进阶篇之hash表的脾性

程序员进阶篇之hash表的脾性

Sep 17, 2017 am 10:16 AM
hash程序员

张炎泼先生于2016年加入白山云科技,主要负责对象存储研发、数据跨机房分布和修复问题解决等工作。以实现100PB级数据存储为目标,其带领团队完成全网分布存储系统的设计、实现与部署工作,将数据“冷”“热”分离,使冷数据成本压缩至1.2倍冗余度。

张炎泼先生2006年至2015年,曾就职于新浪,负责Cross-IDC PB级云存储服务的架构设计、协作流程制定、代码规范和实施标准制定及大部分功能实现等工作,支持新浪微博、微盘、视频、SAE、音乐、软件下载等新浪内部存储等业务;2015年至2016年,于美团担任高级技术专家,设计了跨机房的百PB对象存储解决方案:设计和实现高并发和高可靠的多副本复制策略,优化Erasure Code降低90%IO开销。

软件开发中,一个hash表相当于把n个key随机放入到b个bucket中,以实现n个数据在b个单位空间的存储。

我们发现hash表中存在一些有趣现象:

hash表中key的分布规律

当hash表中key和bucket数量一样时(n/b=1):

  • 37% 的bucket是空的

  • 37% 的bucket里只有1个key

  • 26% 的bucket里有1个以上的key(hash冲突)

下图直观的展示了当n=b=20时,hash表里每个bucket中key的数量(按照key的数量对bucket做排序):

图片描述

往往我们对hash表的第一感觉是:如果将key随机放入所有的bucket,bucket中key的数量较为均匀,每个bucket里key数量的期望是1。

而实际上,bucket里key的分布在n较小时非常不均匀;当n增大时,才会逐渐趋于平均。

key的数量对3类bucket数量的影响

下表表示当b不变,n增大时,n/b的值如何影响3类bucket的数量占比(冲突率即含有多于1个key的bucket占比):

图片描述

更直观一点,我们用下图来展示空bucket率和冲突率随n/b值的变化趋势:

图片描述

key数量对bucket均匀程度的影响

上面几组数字是当n/b较小时有意义的参考值,但随n/b逐渐增大,空bucket与1个key的bucket数量几乎为0,绝大多数bucket含有多个key。

当n/b超过1(1个bucket允许存储多个key), 我们主要观察的对象就转变成bucket里key数量的分布规律。

下表表示当n/b较大,每个bucket里key的数量趋于均匀时,不均匀的程度是多少。
为了描述这种不均匀的程度,我们使用bucket中key数量的最大值和最小值之间的比例((most-fewest)/most)来表示。

下表列出了b=100时,随n增大,key的分布情况。

图片描述

可以看出,随着bucket里key平均数量的增加,其分布的不均匀程度也逐渐降低。

和空bucket或1个key的bucket的占比不同n/b,均匀程度不仅取决于n/b的值,也受b值的影响,后面会提到。

未使用统计中常用的均方差法去描述key分布的不均匀程度,是因为软件开发过程中,更多时候要考虑最坏情况下所需准备的内存等资源。

Load Factor:n/b274ea5e19b4ff76c85d67b8feccb62871

另外一种hash表的实现,专门用来存储比较多的key,当 n/b>1n/b1.0时,线性探测失效(没有足够的bucket存储每个key)。这时1个bucket里不仅存储1个key,一般在一个bucket内用chaining,将所有落在这个bucket的key用链表连接起来,来解决冲突时多个key的存储。

链表只在n/b不是很大时适用。因为链表的查找需要O(n)的时间开销,对于非常大的n/b,有时会用tree替代链表来管理bucket内的key。

n/b值较大的使用场景之一是:将一个网站的用户随机分配到多个不同的web-server上,这时每个web-server可以服务多个用户。多数情况下,我们都希望这种分配能尽可能均匀,从而有效利用每个web-server资源。

这就要求我们关注hash的均匀程度。因此,接下来要讨论的是,假定hash函数完全随机的,均匀程度根据n和b如何变化。

n/b 越大,key的分布越均匀

当 n/b 足够大时,空bucket率趋近于0,且每个bucket中key的数量趋于平均。每个bucket中key数量的期望是:

avg=n/b

定义一个bucket平均key的数量是100%:bucket中key的数量刚好是n/b,下图分别模拟了 b=20,n/b分别为 10、100、1000时,bucket中key的数量分布。

图片描述
图片描述
图片描述

可以看出,当 n/b 增大时,bucket中key数量的最大值与最小值差距在逐渐缩小。下表列出了随b和n/b增大,key分布的均匀程度的变化:

图片描述

结论:

图片描述

计算

上述大部分结果来自于程序模拟,现在我们来解决从数学上如何计算这些数值。

每类bucket的数量

图片描述

空bucket数量

对于1个key, 它不在某个特定的bucket的概率是 (b−1)/b
所有key都不在某个特定的bucket的概率是( (b−1)/b)n

已知:

图片描述

空bucket率是:

图片描述

空bucket数量为:

图片描述

有1个key的bucket数量

n个key中,每个key有1/b的概率落到某个特定的bucket里,其他key以1-(1/b)的概率不落在这个bucket里,因此,对某个特定的bucket,刚好有1个key的概率是:

图片描述

刚好有1个key的bucket数量为:

图片描述

多个key的bucket

剩下即为含多个key的bucket数量:

图片描述

key在bucket中分布的均匀程度

类似的,1个bucket中刚好有i个key的概率是:n个key中任选i个,并都以1/b的概率落在这个bucket里,其他n-i个key都以1-1/b的概率不落在这个bucket里,即:

图片描述

这就是著名的二项式分布。

我们可通过二项式分布估计bucket中key数量的最大值与最小值。

通过正态分布来近似

当 n, b 都很大时,二项式分布可以用正态分布来近似估计key分布的均匀性:

p=1/b,1个bucket中刚好有i个key的概率为:

图片描述

1个bucket中key数量不多于x的概率是:

图片描述

所以,所有不多于x个key的bucket数量是:

图片描述

bucket中key数量的最小值,可以这样估算: 如果不多于x个key的bucket数量是1,那么这唯一1个bucket就是最少key的bucket。我们只要找到1个最小的x,让包含不多于x个key的bucket总数为1, 这个x就是bucket中key数量的最小值。

计算key数量的最小值x

一个bucket里包含不多于x个key的概率是:

图片描述

Φ(x) 是正态分布的累计分布函数,当x-μ趋近于0时,可以使用以下方式来近似:

图片描述

这个函数的计算较难,但只是要找到x,我们可以在[0~μ]的范围内逆向遍历x,以找到一个x 使得包含不多于x个key的bucket期望数量是1。

图片描述

x可以认为这个x就是bucket里key数量的最小值,而这个hash表中,不均匀的程度可以用key数量最大值与最小值的差异来描述: 因为正态分布是对称的,所以key数量的最大值可以用 μ + (μ-x) 来表示。最终,bucket中key数量最大值与最小值的比例就是:

图片描述

(μ是均值n/b)

程序模拟

以下python脚本模拟了key在bucket中分布的情况,同时可以作为对比,验证上述计算结果。

import sysimport mathimport timeimport hashlibdef normal_pdf(x, mu, sigma):
    x = float(x)
    mu = float(mu)

    m = 1.0 / math.sqrt( 2 * math.pi ) / sigma
    n = math.exp(-(x-mu)**2 / (2*sigma*sigma))return m * ndef normal_cdf(x, mu, sigma):
    # integral(-oo,x)

    x = float(x)
    mu = float(mu)
    sigma = float(sigma)    # to standard form
    x = (x - mu) / sigma

    s = x
    v = x    for i in range(1, 100):
        v = v * x * x / (2*i+1)
        s += v    return 0.5 + s/(2*math.pi)**0.5 * math.e ** (-x*x/2)def difference(nbucket, nkey):

    nbucket, nkey= int(nbucket), int(nkey)    # binomial distribution approximation by normal distribution
    # find the bucket with minimal keys.
    #
    # the probability that a bucket has exactly i keys is:
    #   # probability density function
    #   normal_pdf(i, mu, sigma)
    #
    # the probability that a bucket has 0 ~ i keys is:
    #   # cumulative distribution function
    #   normal_cdf(i, mu, sigma)
    #
    # if the probability that a bucket has 0 ~ i keys is greater than 1/nbucket, we
    # say there will be a bucket in hash table has:
    # (i_0*p_0 + i_1*p_1 + ...)/(p_0 + p_1 + ..) keys.
    p = 1.0 / nbucket
    mu = nkey * p
    sigma = math.sqrt(nkey * p * (1-p))

    target = 1.0 / nbucket
    minimal = mu    while True:

        xx = normal_cdf(minimal, mu, sigma)        if abs(xx-target) < target/10:            break

        minimal -= 1

    return minimal, (mu-minimal) * 2 / (mu + (mu - minimal))def difference_simulation(nbucket, nkey):

    t = str(time.time())
    nbucket, nkey= int(nbucket), int(nkey)

    buckets = [0] * nbucket    for i in range(nkey):
        hsh = hashlib.sha1(t + str(i)).digest()
        buckets[hash(hsh) % nbucket] += 1

    buckets.sort()
    nmin, mmax = buckets[0], buckets[-1]    return nmin, float(mmax - nmin) / mmaxif __name__ == "__main__":

    nbucket, nkey= sys.argv[1:]

    minimal, rate = difference(nbucket, nkey)    print &#39;by normal distribution:&#39;
    print &#39;     min_bucket:&#39;, minimal    print &#39;     difference:&#39;, rate

    minimal, rate = difference_simulation(nbucket, nkey)    print &#39;by simulation:&#39;
    print &#39;     min_bucket:&#39;, minimal    print &#39;     difference:&#39;, rate

以上是程序员进阶篇之hash表的脾性的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
PHP和Python:解释了不同的范例PHP和Python:解释了不同的范例Apr 18, 2025 am 12:26 AM

PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

PHP和Python:深入了解他们的历史PHP和Python:深入了解他们的历史Apr 18, 2025 am 12:25 AM

PHP起源于1994年,由RasmusLerdorf开发,最初用于跟踪网站访问者,逐渐演变为服务器端脚本语言,广泛应用于网页开发。Python由GuidovanRossum于1980年代末开发,1991年首次发布,强调代码可读性和简洁性,适用于科学计算、数据分析等领域。

在PHP和Python之间进行选择:指南在PHP和Python之间进行选择:指南Apr 18, 2025 am 12:24 AM

PHP适合网页开发和快速原型开发,Python适用于数据科学和机器学习。1.PHP用于动态网页开发,语法简单,适合快速开发。2.Python语法简洁,适用于多领域,库生态系统强大。

PHP和框架:现代化语言PHP和框架:现代化语言Apr 18, 2025 am 12:14 AM

PHP在现代化进程中仍然重要,因为它支持大量网站和应用,并通过框架适应开发需求。1.PHP7提升了性能并引入了新功能。2.现代框架如Laravel、Symfony和CodeIgniter简化开发,提高代码质量。3.性能优化和最佳实践进一步提升应用效率。

PHP的影响:网络开发及以后PHP的影响:网络开发及以后Apr 18, 2025 am 12:10 AM

PHPhassignificantlyimpactedwebdevelopmentandextendsbeyondit.1)ItpowersmajorplatformslikeWordPressandexcelsindatabaseinteractions.2)PHP'sadaptabilityallowsittoscaleforlargeapplicationsusingframeworkslikeLaravel.3)Beyondweb,PHPisusedincommand-linescrip

PHP类型提示如何起作用,包括标量类型,返回类型,联合类型和无效类型?PHP类型提示如何起作用,包括标量类型,返回类型,联合类型和无效类型?Apr 17, 2025 am 12:25 AM

PHP类型提示提升代码质量和可读性。1)标量类型提示:自PHP7.0起,允许在函数参数中指定基本数据类型,如int、float等。2)返回类型提示:确保函数返回值类型的一致性。3)联合类型提示:自PHP8.0起,允许在函数参数或返回值中指定多个类型。4)可空类型提示:允许包含null值,处理可能返回空值的函数。

PHP如何处理对象克隆(克隆关键字)和__clone魔法方法?PHP如何处理对象克隆(克隆关键字)和__clone魔法方法?Apr 17, 2025 am 12:24 AM

PHP中使用clone关键字创建对象副本,并通过\_\_clone魔法方法定制克隆行为。1.使用clone关键字进行浅拷贝,克隆对象的属性但不克隆对象属性内的对象。2.通过\_\_clone方法可以深拷贝嵌套对象,避免浅拷贝问题。3.注意避免克隆中的循环引用和性能问题,优化克隆操作以提高效率。

PHP与Python:用例和应用程序PHP与Python:用例和应用程序Apr 17, 2025 am 12:23 AM

PHP适用于Web开发和内容管理系统,Python适合数据科学、机器学习和自动化脚本。1.PHP在构建快速、可扩展的网站和应用程序方面表现出色,常用于WordPress等CMS。2.Python在数据科学和机器学习领域表现卓越,拥有丰富的库如NumPy和TensorFlow。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前By尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前By尊渡假赌尊渡假赌尊渡假赌

热工具

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。