搜索
首页后端开发Python教程Golang高并发代码分享

Golang高并发代码分享

May 17, 2018 pm 04:29 PM
golang分享并发

今天领导问起为什么用Golang,同事回答语法简单,语言新,支持高并发。那高并发到底如何实现,下面这篇文章主要给大家介绍了关于如何利用Golang写出高并发代码的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考借鉴,下面来一起看看吧。

前言

之前一直对Golang如何处理高并发http请求的一头雾水,这几天也查了很多相关博客,似懂非懂,不知道具体代码怎么写

下午偶然在开发者头条APP上看到一篇国外技术人员的一篇文章用Golang处理每分钟百万级请求,看完文章中的代码,自己写了一遍代码,下面自己写下自己的体会

核心要点

将请求放入队列,通过一定数量(例如CPU核心数)goroutine组成一个worker池(pool),workder池中的worker读取队列执行任务

实例代码

以下代码笔者根据自己的理解进行了简化,主要是表达出个人的思路,实际后端开发中,根据实际场景修改

func doTask() {
 //耗时炒作(模拟)
 time.Sleep(200 * time.Millisecond)
 wg.Done()
}

//这里模拟的http接口,每次请求抽象为一个job
func handle() {
 //wg.Add(1)
 job := Job{}
 JobQueue <- job
}

var (
 MaxWorker = 1000
 MaxQueue = 200000
 wg  sync.WaitGroup
)

type Worker struct {
 quit chan bool
}

func NewWorker() Worker {
 return Worker{
  quit: make(chan bool)}
}

// Start method starts the run loop for the worker, listening for a quit channel in
// case we need to stop it
func (w Worker) Start() {
 go func() {
  for {
   select {
   case <-JobQueue:
    // we have received a work request.
    doTask()
   case <-w.quit:
    // we have received a signal to stop
    return
   }
  }
 }()
}

// Stop signals the worker to stop listening for work requests.
func (w Worker) Stop() {
 go func() {
  w.quit <- true
 }()
}

type Job struct {
}

var JobQueue chan Job = make(chan Job, MaxQueue)

type Dispatcher struct {
}

func NewDispatcher() *Dispatcher {
 return &Dispatcher{}
}

func (d *Dispatcher) Run() {
 // starting n number of workers
 for i := 0; i < MaxWorker; i++ {
  worker := NewWorker()
  worker.Start()
 }
}

测试

func Benchmark_handle(b *testing.B) {
 runtime.GOMAXPROCS(runtime.NumCPU())
 d := NewDispatcher()
 d.Run()
 for i:=0;i<10000;i++ {
  wg.Add(1)
  handle()
 }
 wg.Wait()
}

测试结果

pkg: golang-study-demo/goroutine
1 2029931652 ns/op
PASS

1w个任务放到队列中,1000个worker去执行任务,每个任务的耗时200ms,任务执行完需要2s多

以上只是笔者的个人看法,不知道对Golang并发编程的理解是否正确,有错误的地方,希望高手指点一二,在此谢过

以上是Golang高并发代码分享的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python的科学计算中如何使用阵列?Python的科学计算中如何使用阵列?Apr 25, 2025 am 12:28 AM

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

您如何处理同一系统上的不同Python版本?您如何处理同一系统上的不同Python版本?Apr 25, 2025 am 12:24 AM

你可以通过使用pyenv、venv和Anaconda来管理不同的Python版本。1)使用pyenv管理多个Python版本:安装pyenv,设置全局和本地版本。2)使用venv创建虚拟环境以隔离项目依赖。3)使用Anaconda管理数据科学项目中的Python版本。4)保留系统Python用于系统级任务。通过这些工具和策略,你可以有效地管理不同版本的Python,确保项目顺利运行。

与标准Python阵列相比,使用Numpy数组的一些优点是什么?与标准Python阵列相比,使用Numpy数组的一些优点是什么?Apr 25, 2025 am 12:21 AM

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基于基于duetoc的iMplation,2)2)他们的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函数函数函数函数构成和稳定性构成和稳定性的操作,制造

阵列的同质性质如何影响性能?阵列的同质性质如何影响性能?Apr 25, 2025 am 12:13 AM

数组的同质性对性能的影响是双重的:1)同质性允许编译器优化内存访问,提高性能;2)但限制了类型多样性,可能导致效率低下。总之,选择合适的数据结构至关重要。

编写可执行python脚本的最佳实践是什么?编写可执行python脚本的最佳实践是什么?Apr 25, 2025 am 12:11 AM

到CraftCraftExecutablePythcripts,lollow TheSebestPractices:1)Addashebangline(#!/usr/usr/bin/envpython3)tomakethescriptexecutable.2)setpermissionswithchmodwithchmod xyour_script.3)

Numpy数组与使用数组模块创建的数组有何不同?Numpy数组与使用数组模块创建的数组有何不同?Apr 24, 2025 pm 03:53 PM

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,内存效率段

Numpy数组的使用与使用Python中的数组模块阵列相比如何?Numpy数组的使用与使用Python中的数组模块阵列相比如何?Apr 24, 2025 pm 03:49 PM

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

CTYPES模块与Python中的数组有何关系?CTYPES模块与Python中的数组有何关系?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器