首页 >后端开发 >php教程 >PHP计算余弦相似度算法

PHP计算余弦相似度算法

巴扎黑
巴扎黑原创
2017-08-15 09:55:162163浏览

这篇文章主要介绍了PHP数据分析引擎计算余弦相似度算法,结合具体实例形式分析了php计算余弦相似度的操作步骤与相关实现技巧,需要的朋友可以参考下

本文实例讲述了PHP数据分析引擎计算余弦相似度算法。分享给大家供大家参考,具体如下:

关于余弦相似度的相关介绍可参考百度百科:余弦相似度


<?php
/**
 * 数据分析引擎
 * 分析向量的元素 必须和基准向量的元素一致,取最大个数,分析向量不足元素以0填补。
 * 求出分析向量与基准向量的余弦值
 * @author yu.guo@okhqb.com
 */
/**
 * 获得向量的模
 * @param unknown_type $array 传入分析数据的基准点的N维向量。|eg:array(1,1,1,1,1);
 */
function getMarkMod($arrParam){
 $strModDouble = 0;
 foreach($arrParam as $val){
 $strModDouble += $val * $val;
 }
 $strMod = sqrt($strModDouble);
 //是否需要保留小数点后几位
 return $strMod;
}
/**
 * 获取标杆的元素个数
 * @param unknown_type $arrParam
 * @return number
 */
function getMarkLenth($arrParam){
 $intLenth = count($arrParam);
 return $intLenth;
}
/**
 * 对传入数组进行索引分配,基准点的索引必须为k,求夹角的向量索引必须为 &#39;j&#39;.
 * @param unknown_type $arrParam
 * @param unknown_type $index
 * @ruturn $arrBack
 */
function handIndex($arrParam, $index = &#39;k&#39;){
 foreach($arrParam as $key => $val){
  $in = $index.$key;
  $arrBack[$in] = $val;
 }
 return $arrBack;
}
/**
 *
 * @param unknown_type $arrMark标杆向量数组(索引被处理过)
 * @param unknown_type $arrAnaly 分析向量数组 (索引被处理过) |array(&#39;j0&#39;=>1,&#39;j1&#39;=>2....)
 * @param unknown_type $strMarkMod标杆向量的模
 * @param unknown_type $intLenth 向量的长度
 */
function getCosine($arrMark, $arrAnaly, $strMarkMod ,$intLenth){
 $strVector = 0;
 $strCosine = 0;
 for($i = 0; $i < $intLenth; $i++){
 $strMarkVal = $arrMark[&#39;k&#39;.$i];
 $strAnalyVal = $arrAnaly[&#39;j&#39;.$i];
 $strVector += $strMarkVal * $strAnalyVal;
 }
 $arrAnalyMod = getMarkMod($arrAnaly); //求分析向量的模
 $strFenzi = $strVector;
 $strFenMu = $arrAnalyMod * $strMarkMod;
 $strCosine = $strFenzi / $strFenMu;
 if(0 !== (int)$strFenMu){
 $strCosine = $strFenzi / $strFenMu;
 }
 return $strCosine;
}
?>

以上是PHP计算余弦相似度算法的详细内容。更多信息请关注PHP中文网其他相关文章!

声明:
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn