搜索
首页后端开发Python教程分享Python如何利用plotly绘制数据图表的案例(图文)

本篇文章主要介绍了Python使用plotly绘制数据图表的方法,实例分析了plotly绘制的技巧,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

导语:使用 python-plotly 模块来进行压测数据的绘制,并且生成静态 html 页面结果展示。

不少小伙伴在开发过程中都有对模块进行压测的经历,压测结束后大家往往喜欢使用Excel处理压测数据并绘制数据可视化视图,但这样不能很方便的使用web页面进行数据展示。本文将介绍使用python-plotly模块来进行压测数据的绘制,并且生成静态html页面方便结果展示。

Plotly简介

Plotly是一款使用JavaScript开发的制图工具,提供了与主流数据分析语言交互的API(如:Python, R, MATLAB)。大家可以到官网 https://plot.ly/ 了解更多详细的信息。Plotly能够绘制具有用户交互功能的精美图表。

Python-Plotly 安装

本文档主要是介绍使用plotly的Python API来进行几种简单图表的绘制,更多Plotly的用法请参考 https://plot.ly/python/

Python-Plotly可以使用pip安装,并且最好在Python2.7版本及以上安装使用,如果使用Python2.6版本,请自行安装Python2.7和对应的pip。

Plotly绘图实例

line-plots

绘图效果:

生成的html页面在右上角提供了丰富的交互工具。

代码:


def line_plots(name):
  '''
  绘制普通线图
  '''
  #数据,x为横坐标,y,z为纵坐标的两项指标,三个array长度相同
  dataset = {'x':[0,1,2,3,4,5,6,7,8,9],
        'y':[5,4,1,3,11,2,6,7,19,20],
        'z':[12,9,0,0,3,25,8,17,22,5]}
  data_g = []
  #分别插入 y, z
  tr_x = Scatter(
    x = dataset['x'],
    y = dataset['y'],
    name = 'y' 
  )
  data_g.append(tr_x)
  tr_z = Scatter(
    x = dataset['x'],
    y = dataset['z'],
    name = 'z' 
  )
  data_g.append(tr_z)
  #设置layout,指定图表title,x轴和y轴名称
  layout = Layout(title="line plots", xaxis={'title':'x'}, yaxis={'title':'value'})
  #将layout设置到图表
  fig = Figure(data=data_g, layout=layout)
  #绘图,输出路径为name参数指定
  pltoff.plot(fig, filename=name)

scatter-plots

绘图效果:

代码:


def scatter_plots(name):
  '''
  绘制散点图
  '''
  dataset = {'x':[0,1,2,3,4,5,6,7,8,9],
        'y':[5,4,1,3,11,2,6,7,19,20],
        'text':['5_txt','4_txt','1_txt','3_txt','11_txt','2_txt','6_txt','7_txt','19_txt','20_txt']}

  data_g = []

  tr_x = Scatter(
    x = dataset['x'],
    y = dataset['y'],
    text = dataset['text'],
    textposition='top center',
    mode='markers+text',
    name = 'y' 
  )
  data_g.append(tr_x)

  layout = Layout(title="scatter plots", xaxis={'title':'x'}, yaxis={'title':'value'})
  fig = Figure(data=data_g, layout=layout)
  pltoff.plot(fig, filename=name)

bar-charts

绘图效果:

代码:


def bar_charts(name):
  '''
  绘制柱状图
  '''
  dataset = {'x':['Windows', 'Linux', 'Unix', 'MacOS'],
        'y1':[45, 26, 37, 13],
        'y2':[19, 27, 33, 21]}
  data_g = []
  tr_y1 = Bar(
    x = dataset['x'],
    y = dataset['y1'],
    name = 'v1'
  )
  data_g.append(tr_y1)

  tr_y2 = Bar(
    x = dataset['x'],
    y = dataset['y2'],
    name = 'v2'
  )
  data_g.append(tr_y2)
  layout = Layout(title="bar charts", xaxis={'title':'x'}, yaxis={'title':'value'})
  fig = Figure(data=data_g, layout=layout)
  pltoff.plot(fig, filename=name)

pie-charts

绘图效果:

代码:


def pie_charts(name):
  '''
  绘制饼图
  '''
  dataset = {'labels':['Windows', 'Linux', 'Unix', 'MacOS', 'Android', 'iOS'],
        'values':[280, 25, 10, 100, 250, 270]} 
  data_g = []
  tr_p = Pie(
    labels = dataset['labels'],
    values = dataset['values']
  )
  data_g.append(tr_p)
  layout = Layout(title="pie charts")
  fig = Figure(data=data_g, layout=layout)
  pltoff.plot(fig, filename=name)

filled-area-plots

本例是绘制具有填充效果的堆叠线图,适合分析具有堆叠百分比属性的数据

绘图效果:

代码:


def filled_area_plots(name):
  '''
  绘制堆叠填充的线图
  '''
  dataset = {'x':[0,1,2,3,4,5,6,7,8,9],
        'y1':[5,4,1,3,11,2,6,7,19,20],
        'y2':[12,9,0,0,3,25,8,17,22,5],
        'y3':[13,22,46,1,15,4,18,11,17,20]}

  #计算y1,y2,y3的堆叠占比
  dataset['y1_stack'] = dataset['y1']
  dataset['y2_stack'] = [y1+y2 for y1, y2 in zip(dataset['y1'], dataset['y2'])]
  dataset['y3_stack'] = [y1+y2+y3 for y1, y2, y3 in zip(dataset['y1'], dataset['y2'], dataset['y3'])]

  dataset['y1_text'] = ['%s(%s%%)'%(y1, y1*100/y3_s) for y1, y3_s in zip(dataset['y1'], dataset['y3_stack'])]
  dataset['y2_text'] = ['%s(%s%%)'%(y2, y2*100/y3_s) for y2, y3_s in zip(dataset['y2'], dataset['y3_stack'])]
  dataset['y3_text'] = ['%s(%s%%)'%(y3, y3*100/y3_s) for y3, y3_s in zip(dataset['y3'], dataset['y3_stack'])]

  data_g = []
  tr_1 = Scatter(
    x = dataset['x'],
    y = dataset['y1_stack'],
    text = dataset['y1_text'],
    hoverinfo = 'x+text',
    mode = 'lines',
    name = 'y1', 
    fill = 'tozeroy' #填充方式: 到x轴
  )
  data_g.append(tr_1)

  tr_2 = Scatter(
    x = dataset['x'],
    y = dataset['y2_stack'],
    text = dataset['y2_text'],
    hoverinfo = 'x+text',
    mode = 'lines',
    name = 'y2', 
    fill = 'tonexty' #填充方式:到下方的另一条线
  )
  data_g.append(tr_2)

  tr_3 = Scatter(
    x = dataset['x'],
    y = dataset['y3_stack'],
    text = dataset['y3_text'],
    hoverinfo = 'x+text',
    mode = 'lines',
    name = 'y3',
    fill = 'tonexty'
  )
  data_g.append(tr_3)

  layout = Layout(title="field area plots", xaxis={'title':'x'}, yaxis={'title':'value'})
  fig = Figure(data=data_g, layout=layout)
  pltoff.plot(fig, filename=name)

小结

本文介绍了利用python-plotly绘制数据图的方法,实例中 线图(line plots)、散点图(scatter plots)、柱状图(bar charts)、饼图(pie charts)以及填充堆叠线图(filled area plots)这五种典型的图表基本上涵盖了大部分类型的测试数据,各位小伙伴可以加以变形绘制出更多的漂亮图标。

以上是分享Python如何利用plotly绘制数据图表的案例(图文)的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python vs.C:申请和用例Python vs.C:申请和用例Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时的Python计划:一种现实的方法2小时的Python计划:一种现实的方法Apr 11, 2025 am 12:04 AM

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python:探索其主要应用程序Python:探索其主要应用程序Apr 10, 2025 am 09:41 AM

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

您可以在2小时内学到多少python?您可以在2小时内学到多少python?Apr 09, 2025 pm 04:33 PM

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

如何在10小时内通过项目和问题驱动的方式教计算机小白编程基础?如何在10小时内通过项目和问题驱动的方式教计算机小白编程基础?Apr 02, 2025 am 07:18 AM

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

如何在使用 Fiddler Everywhere 进行中间人读取时避免被浏览器检测到?如何在使用 Fiddler Everywhere 进行中间人读取时避免被浏览器检测到?Apr 02, 2025 am 07:15 AM

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...

Python 3.6加载Pickle文件报错"__builtin__"模块未找到怎么办?Python 3.6加载Pickle文件报错"__builtin__"模块未找到怎么办?Apr 02, 2025 am 07:12 AM

Python3.6环境下加载Pickle文件报错:ModuleNotFoundError:Nomodulenamed...

如何提高jieba分词在景区评论分析中的准确性?如何提高jieba分词在景区评论分析中的准确性?Apr 02, 2025 am 07:09 AM

如何解决jieba分词在景区评论分析中的问题?当我们在进行景区评论分析时,往往会使用jieba分词工具来处理文�...

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版