本文就Pandas的运行效率作一个对比的测试,来探讨用哪些方式,会使得运行效率较好。
测试环境如下:
windows 7, 64位
python 3.5
pandas 0.19.2
numpy 1.11.3
jupyter notebook
需要说明的是,不同的系统,不同的电脑配置,不同的软件环境,运行结果可能有些差异。就算是同一台电脑,每次运行时,运行结果也不完全一样。
1 测试内容
测试的内容为,分别用三种方法来计算一个简单的运算过程,即 a*a+b*b 。
三种方法分别是:
python的for循环
Pandas的Series
Numpy的ndarray
首先构造一个DataFrame,数据量的大小,即DataFrame的行数,分别为10, 100, 1000, … ,直到10,000,000(一千万)。
然后在jupyter notebook中,用下面的代码分别去测试,来查看不同方法下的运行时间,做一个对比。
import pandas as pdimport numpy as np# 100分别用 10,100,...,10,000,000来替换运行list_a = list(range(100))# 200分别用 20,200,...,20,000,000来替换运行list_b = list(range(100,200)) print(len(list_a)) print(len(list_b)) df = pd.DataFrame({'a':list_a, 'b':list_b}) print('数据维度为:{}'.format(df.shape)) print(len(df)) print(df.head())
100 100 数据维度为:(100, 2) 100 a b 0 0 100 1 1 101 2 2 102 3 3 103 4 4 104
执行运算, a*a + b*b
Method 1: for循环
%%timeit# 当DataFrame的行数大于等于1000000时,请用 %%time 命令for i in range(len(df)): df['a'][i]*df['a'][i]+df['b'][i]*df['b'][i]
100 loops, best of 3: 12.8 ms per loop
Method 2: Series
type(df['a'])
pandas.core.series.Series
%%timeit df['a']*df['a']+df['b']*df['b']
The slowest run took 5.41 times longer than the fastest. This could mean that an intermediate result is being cached. 1000 loops, best of 3: 669 µs per loop
Method 3: ndarray
type(df['a'].values)
numpy.ndarray
%%timeit df['a'].values*df['a'].values+df['b'].values*df['b'].values
10000 loops, best of 3: 34.2 µs per loop
2 测试结果
运行结果如下:
从运行结果可以看出,for循环明显比Series和ndarray要慢很多,并且数据量越大,差异越明显。当数据量达到一千万行时,for循环的表现也差一万倍以上。 而Series和ndarray之间的差异则没有那么大。
PS: 1000万行时,for循环运行耗时特别长,各位如果要测试,需要注意下,请用 %%time 命令(只测试一次)。
下面通过图表来对比下Series和ndarray之间的表现。
从上图可以看出,当数据小于10万行时,ndarray的表现要比Series好些。而当数据行数大于100万行时,Series的表现要稍微好于ndarray。当然,两者的差异不是特别明显。
所以一般情况下,个人建议,for循环,能不用则不用,而当数量不是特别大时,建议使用ndarray(即df[‘col’].values)来进行计算,运行效率相对来说要好些。
以上是Python: Pandas如何高效运算的方法的详细内容。更多信息请关注PHP中文网其他相关文章!

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

选择Python还是C 取决于项目需求:1)如果需要快速开发、数据处理和原型设计,选择Python;2)如果需要高性能、低延迟和接近硬件的控制,选择C 。

通过每天投入2小时的Python学习,可以有效提升编程技能。1.学习新知识:阅读文档或观看教程。2.实践:编写代码和完成练习。3.复习:巩固所学内容。4.项目实践:应用所学于实际项目中。这样的结构化学习计划能帮助你系统掌握Python并实现职业目标。

在两小时内高效学习Python的方法包括:1.回顾基础知识,确保熟悉Python的安装和基本语法;2.理解Python的核心概念,如变量、列表、函数等;3.通过使用示例掌握基本和高级用法;4.学习常见错误与调试技巧;5.应用性能优化与最佳实践,如使用列表推导式和遵循PEP8风格指南。

Python适合初学者和数据科学,C 适用于系统编程和游戏开发。1.Python简洁易用,适用于数据科学和Web开发。2.C 提供高性能和控制力,适用于游戏开发和系统编程。选择应基于项目需求和个人兴趣。

Python更适合数据科学和快速开发,C 更适合高性能和系统编程。1.Python语法简洁,易于学习,适用于数据处理和科学计算。2.C 语法复杂,但性能优越,常用于游戏开发和系统编程。

每天投入两小时学习Python是可行的。1.学习新知识:用一小时学习新概念,如列表和字典。2.实践和练习:用一小时进行编程练习,如编写小程序。通过合理规划和坚持不懈,你可以在短时间内掌握Python的核心概念。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SublimeText3 Linux新版
SublimeText3 Linux最新版

Atom编辑器mac版下载
最流行的的开源编辑器

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

SublimeText3汉化版
中文版,非常好用

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)