适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便 派上用场了。 我们约定有向加权图G不存在负权回路,即最短路径一定存在。当然,我们可以在执行该算法前做一次拓扑排序,以判断是否存在负权回路,但这不是我们讨论的重 点。
算法思想:我们用数组d记录每个结点的最短路径估计值,用邻接表来存储图G。我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的 结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在 当前的队列中,就将v点放入队尾。这样不断从队列中取出结点来进行松弛操作,直至队列空为止
期望的时间复杂度O(ke), 其中k为所有顶点进队的平均次数,可以证明k一般小于等于2。
实现方法:
建立一个队列,初始时队列里只有起始点,再建立一个表格记录起始点到所有点的最短路径(该表格的初始值要赋为极大值,该点到他本身的路径赋为 0)。然后执行松弛操作,用队列里有的点作为起始点去刷新到所有点的最短路,如果刷新成功且被刷新点不在队列中则把该点加入到队列最后。重复执行直到队列 为空。
判断有无负环:
如果某个点进入队列的次数超过N次则存在负环(SPFA无法处理带负环的图)
首先建立起始点a到其余各点的
最短路径表格
首先源点a入队,当队列非空时:
1、队首元素(a)出队,对以a为起始点的所有边的终点依次进行松弛操作(此处有b,c,d三个点),此时路径表格状态为:
在松弛时三个点的最短路径估值变小了,而这些点队列中都没有出现,这些点
需要入队,此时,队列中新入队了三个结点b,c,d
队首元素b点出队,对以b为起始点的所有边的终点依次进行松弛操作(此处只有e点),此时路径表格状态为:
在最短路径表中,e的最短路径估值也变小了,e在队列中不存在,因此e也要
入队,此时队列中的元素为c,d,e
队首元素c点出队,对以c为起始点的所有边的终点依次进行松弛操作(此处有e,f两个点),此时路径表格状态为:
在最短路径表中,e,f的最短路径估值变小了,e在队列中存在,f不存在。因此
e不用入队了,f要入队,此时队列中的元素为d,e,f
队首元素d点出队,对以d为起始点的所有边的终点依次进行松弛操作(此处只有g这个点),此时路径表格状态为:
在最短路径表中,g的最短路径估值没有变小(松弛不成功),没有新结点入队,队列中元素为f,g
队首元素f点出队,对以f为起始点的所有边的终点依次进行松弛操作(此处有d,e,g三个点),此时路径表格状态为:
在最短路径表中,e,g的最短路径估值又变小,队列中无e点,e入队,队列中存在g这个点,g不用入队,此时队列中元素为g,e
队首元素g点出队,对以g为起始点的所有边的终点依次进行松弛操作(此处只有b点),此时路径表格状态为:
在最短路径表中,b的最短路径估值又变小,队列中无b点,b入队,此时队列中元素为e,b
队首元素e点出队,对以e为起始点的所有边的终点依次进行松弛操作(此处只有g这个点),此时路径表格状态为:
在最短路径表中,g的最短路径估值没变化(松弛不成功),此时队列中元素为b
队首元素b点出队,对以b为起始点的所有边的终点依次进行松弛操作(此处只有e这个点),此时路径表格状态为:
在最短路径表中,e的最短路径估值没变化(松弛不成功),此时队列为空了
最终a到g的最短路径为14
java代码
package spfa负权路径; import java.awt.List; import java.util.ArrayList; import java.util.Scanner; public class SPFA { /** * @param args */ public long[] result; //用于得到第s个顶点到其它顶点之间的最短距离 //数组实现邻接表存储 class edge{ public int a;//边的起点 public int b;//边的终点 public int value;//边的值 public edge(int a,int b,int value){ this.a=a; this.b=b; this.value=value; } } public static void main(String[] args) { // TODO Auto-generated method stub SPFA spafa=new SPFA(); Scanner scan=new Scanner(System.in); int n=scan.nextInt(); int s=scan.nextInt(); int p=scan.nextInt(); edge[] A=new edge[p]; for(int i=0;i<p;i++){ int a=scan.nextInt(); int b=scan.nextInt(); int value=scan.nextInt(); A[i]=spafa.new edge(a,b,value); } if(spafa.getShortestPaths(n,s,A)){ for(int i=0;i<spafa.result.length;i++){ System.out.println(spafa.result[i]+" "); } }else{ System.out.println("存在负环"); } } /* * 参数n:给定图的顶点个数 * 参数s:求取第s个顶点到其它所有顶点之间的最短距离 * 参数edge:给定图的具体边 * 函数功能:如果给定图不含负权回路,则可以得到最终结果,如果含有负权回路,则不能得到最终结果 */ private boolean getShortestPaths(int n, int s, edge[] A) { // TODO Auto-generated method stub ArrayList<Integer> list = new ArrayList<Integer>(); result=new long[n]; boolean used[]=new boolean[n]; int num[]=new int[n]; for(int i=0;i<n;i++){ result[i]=Integer.MAX_VALUE; used[i]=false; } result[s]=0;//第s个顶点到自身距离为0 used[s]=true;//表示第s个顶点进入数组队 num[s]=1;//表示第s个顶点已被遍历一次 list.add(s); //第s个顶点入队 while(list.size()!=0){ int a=list.get(0);//获取数组队中第一个元素 list.remove(0);//删除数组队中第一个元素 for(int i=0;i<A.length;i++){ //当list数组队的第一个元素等于边A[i]的起点时 if(a==A[i].a&&result[A[i].b]>(result[A[i].a]+A[i].value)){ result[A[i].b]=result[A[i].a]+A[i].value; if(!used[A[i].b]){ list.add(A[i].b); num[A[i].b]++; if(num[A[i].b]>n){ return false; } used[A[i].b]=true;//表示边A[i]的终点b已进入数组队 } } } used[a]=false; //顶点a出数组对 } return true; } }
以上是SPFA算法使用教程的详细内容。更多信息请关注PHP中文网其他相关文章!

javaispopularforcross-platformdesktopapplicationsduetoits“ writeonce,runanywhere”哲学。1)itusesbytbytybytecebytecodethatrunsonanyjvm-platform.2)librarieslikeslikeslikeswingingandjavafxhelpcreatenative-lookingenative-lookinguisis.3)

在Java中编写平台特定代码的原因包括访问特定操作系统功能、与特定硬件交互和优化性能。1)使用JNA或JNI访问Windows注册表;2)通过JNI与Linux特定硬件驱动程序交互;3)通过JNI使用Metal优化macOS上的游戏性能。尽管如此,编写平台特定代码会影响代码的可移植性、增加复杂性、可能带来性能开销和安全风险。

Java将通过云原生应用、多平台部署和跨语言互操作进一步提升平台独立性。1)云原生应用将使用GraalVM和Quarkus提升启动速度。2)Java将扩展到嵌入式设备、移动设备和量子计算机。3)通过GraalVM,Java将与Python、JavaScript等语言无缝集成,增强跨语言互操作性。

Java的强类型系统通过类型安全、统一的类型转换和多态性确保了平台独立性。1)类型安全在编译时进行类型检查,避免运行时错误;2)统一的类型转换规则在所有平台上一致;3)多态性和接口机制使代码在不同平台上行为一致。

JNI会破坏Java的平台独立性。1)JNI需要特定平台的本地库,2)本地代码需在目标平台编译和链接,3)不同版本的操作系统或JVM可能需要不同的本地库版本,4)本地代码可能引入安全漏洞或导致程序崩溃。

新兴技术对Java的平台独立性既有威胁也有增强。1)云计算和容器化技术如Docker增强了Java的平台独立性,但需要优化以适应不同云环境。2)WebAssembly通过GraalVM编译Java代码,扩展了其平台独立性,但需与其他语言竞争性能。

不同JVM实现都能提供平台独立性,但表现略有不同。1.OracleHotSpot和OpenJDKJVM在平台独立性上表现相似,但OpenJDK可能需额外配置。2.IBMJ9JVM在特定操作系统上表现优化。3.GraalVM支持多语言,需额外配置。4.AzulZingJVM需特定平台调整。

平台独立性通过在多种操作系统上运行同一套代码,降低开发成本和缩短开发时间。具体表现为:1.减少开发时间,只需维护一套代码;2.降低维护成本,统一测试流程;3.快速迭代和团队协作,简化部署过程。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境