搜索
首页后端开发Python教程序列标注、手写小写字母OCR数据集、双向RNN

序列标注、手写小写字母OCR数据集、双向RNN

Jun 23, 2017 pm 02:55 PM
学习序列标注笔记

序列标注(sequence labelling),输入序列每一帧预测一个类别。OCR(Optical Character Recognition 光学字符识别)。

MIT口语系统研究组Rob Kassel收集,斯坦福大学人工智能实验室Ben Taskar预处理OCR数据集(http://ai.stanford.edu/~btaskar/ocr/ ),包含大量单独手写小写字母,每个样本对应16X8像素二值图像。字线组合序列,序列对应单词。6800个,长度不超过14字母的单词。gzip压缩,内容用Tab分隔文本文件。Python csv模块直接读取。文件每行一个归一化字母属性,ID号、标签、像素值、下一字母ID号等。

下一字母ID值排序,按照正确顺序读取每个单词字母。收集字母,直到下一个ID对应字段未被设置为止。读取新序列。读取完目标字母及数据像素,用零图像填充序列对象,能纳入两个较大目标字母所有像素数据NumPy数组。

时间步之间共享softmax层。数据和目标数组包含序列,每个目标字母对应一个图像帧。RNN扩展,每个字母输出添加softmax分类器。分类器对每帧数据而非整个序列评估预测结果。计算序列长度。一个softmax层添加到所有帧:或者为所有帧添加几个不同分类器,或者令所有帧共享同一个分类器。共享分类器,权值在训练中被调整次数更多,训练单词每个字母。一个全连接层权值矩阵维数batch_size*in_size*out_size。现需要在两个输入维度batch_size、sequence_steps更新权值矩阵。令输入(RNN输出活性值)扁平为形状batch_size*sequence_steps*in_size。权值矩阵变成较大的批数据。结果反扁平化(unflatten)。

代价函数,序列每一帧有预测目标对,在相应维度平均。依据张量长度(序列最大长度)归一化的tf.reduce_mean无法使用。需要按照实际序列长度归一化,手工调用tf.reduce_sum和除法运算均值。

损失函数,tf.argmax针对轴2非轴1,各帧填充,依据序列实际长度计算均值。tf.reduce_mean对批数据所有单词取均值。

TensorFlow自动导数计算,可使用序列分类相同优化运算,只需要代入新代价函数。对所有RNN梯度裁剪,防止训练发散,避免负面影响。

训练模型,get_sataset下载手写体图像,预处理,小写字母独热编码向量。随机打乱数据顺序,分偏划分训练集、测试集。

单词相邻字母存在依赖关系(或互信息),RNN保存同一单词全部输入信息到隐含活性值。前几个字母分类,网络无大量输入推断额外信息,双向RNN(bidirectional RNN)克服缺陷。
两个RNN观测输入序列,一个按照通常顺序从左端读取单词,另一个按照相反顺序从右端读取单词。每个时间步得到两个输出活性值。送入共享softmax层前,拼接。分类器从每个字母获取完整单词信息。tf.modle.rnn.bidirectional_rnn已实现。

实现双向RNN。划分预测属性到两个函数,只关注较少内容。_shared_softmax函数,传入函数张量data推断输入尺寸。复用其他架构函数,相同扁平化技巧在所有时间步共享同一个softmax层。rnn.dynamic_rnn创建两个RNN。
序列反转,比实现新反向传递RNN运算容易。tf.reverse_sequence函数反转帧数据中sequence_lengths帧。数据流图节点有名称。scope参数是rnn_dynamic_cell变量scope名称,默认值RNN。两个参数不同RNN,需要不同域。
反转序列送入后向RNN,网络输出反转,和前向输出对齐。沿RNN神经元输出维度拼接两个张量,返回。双向RNN模型性能更优。

    import gzipimport csvimport numpy as npfrom helpers import downloadclass OcrDataset:

        URL = 'http://ai.stanford.edu/~btaskar/ocr/letter.data.gz'def __init__(self, cache_dir):
            path = download(type(self).URL, cache_dir)
            lines = self._read(path)
            data, target = self._parse(lines)
            self.data, self.target = self._pad(data, target)

        @staticmethoddef _read(filepath):
            with gzip.open(filepath, 'rt') as file_:
                reader = csv.reader(file_, delimiter='\t')
                lines = list(reader)return lines

        @staticmethoddef _parse(lines):
            lines = sorted(lines, key=lambda x: int(x[0]))
            data, target = [], []
            next_ = Nonefor line in lines:if not next_:
                    data.append([])
                    target.append([])else:assert next_ == int(line[0])
                next_ = int(line[2]) if int(line[2]) > -1 else None
                pixels = np.array([int(x) for x in line[6:134]])
                pixels = pixels.reshape((16, 8))
                data[-1].append(pixels)
                target[-1].append(line[1])return data, target

        @staticmethoddef _pad(data, target):
            max_length = max(len(x) for x in target)
            padding = np.zeros((16, 8))
            data = [x + ([padding] * (max_length - len(x))) for x in data]
            target = [x + ([''] * (max_length - len(x))) for x in target]return np.array(data), np.array(target)import tensorflow as tffrom helpers import lazy_propertyclass SequenceLabellingModel:def __init__(self, data, target, params):
            self.data = data
            self.target = target
            self.params = params
            self.prediction
            self.cost
            self.error
            self.optimize

        @lazy_propertydef length(self):
            used = tf.sign(tf.reduce_max(tf.abs(self.data), reduction_indices=2))
            length = tf.reduce_sum(used, reduction_indices=1)
            length = tf.cast(length, tf.int32)return length

        @lazy_propertydef prediction(self):
            output, _ = tf.nn.dynamic_rnn(
                tf.nn.rnn_cell.GRUCell(self.params.rnn_hidden),
                self.data,
                dtype=tf.float32,
                sequence_length=self.length,
            )# Softmax layer.max_length = int(self.target.get_shape()[1])
            num_classes = int(self.target.get_shape()[2])
            weight = tf.Variable(tf.truncated_normal(
                [self.params.rnn_hidden, num_classes], stddev=0.01))
            bias = tf.Variable(tf.constant(0.1, shape=[num_classes]))# Flatten to apply same weights to all time steps.output = tf.reshape(output, [-1, self.params.rnn_hidden])
            prediction = tf.nn.softmax(tf.matmul(output, weight) + bias)
            prediction = tf.reshape(prediction, [-1, max_length, num_classes])return prediction

        @lazy_propertydef cost(self):# Compute cross entropy for each frame.cross_entropy = self.target * tf.log(self.prediction)
            cross_entropy = -tf.reduce_sum(cross_entropy, reduction_indices=2)
            mask = tf.sign(tf.reduce_max(tf.abs(self.target), reduction_indices=2))
            cross_entropy *= mask# Average over actual sequence lengths.cross_entropy = tf.reduce_sum(cross_entropy, reduction_indices=1)
            cross_entropy /= tf.cast(self.length, tf.float32)return tf.reduce_mean(cross_entropy)

        @lazy_propertydef error(self):
            mistakes = tf.not_equal(
                tf.argmax(self.target, 2), tf.argmax(self.prediction, 2))
            mistakes = tf.cast(mistakes, tf.float32)
            mask = tf.sign(tf.reduce_max(tf.abs(self.target), reduction_indices=2))
            mistakes *= mask# Average over actual sequence lengths.mistakes = tf.reduce_sum(mistakes, reduction_indices=1)
            mistakes /= tf.cast(self.length, tf.float32)return tf.reduce_mean(mistakes)

        @lazy_propertydef optimize(self):
            gradient = self.params.optimizer.compute_gradients(self.cost)try:
                limit = self.params.gradient_clipping
                gradient = [
                    (tf.clip_by_value(g, -limit, limit), v)if g is not None else (None, v)for g, v in gradient]except AttributeError:print('No gradient clipping parameter specified.')
            optimize = self.params.optimizer.apply_gradients(gradient)return optimizeimport randomimport tensorflow as tfimport numpy as npfrom helpers import AttrDictfrom OcrDataset import OcrDatasetfrom SequenceLabellingModel import SequenceLabellingModelfrom batched import batched

    params = AttrDict(
        rnn_cell=tf.nn.rnn_cell.GRUCell,
        rnn_hidden=300,
        optimizer=tf.train.RMSPropOptimizer(0.002),
        gradient_clipping=5,
        batch_size=10,
        epochs=5,
        epoch_size=50)def get_dataset():
        dataset = OcrDataset('./ocr')# Flatten images into vectors.dataset.data = dataset.data.reshape(dataset.data.shape[:2] + (-1,))# One-hot encode targets.target = np.zeros(dataset.target.shape + (26,))for index, letter in np.ndenumerate(dataset.target):if letter:
                target[index][ord(letter) - ord('a')] = 1dataset.target = target# Shuffle order of examples.order = np.random.permutation(len(dataset.data))
        dataset.data = dataset.data[order]
        dataset.target = dataset.target[order]return dataset# Split into training and test data.dataset = get_dataset()
    split = int(0.66 * len(dataset.data))
    train_data, test_data = dataset.data[:split], dataset.data[split:]
    train_target, test_target = dataset.target[:split], dataset.target[split:]# Compute graph._, length, image_size = train_data.shape
    num_classes = train_target.shape[2]
    data = tf.placeholder(tf.float32, [None, length, image_size])
    target = tf.placeholder(tf.float32, [None, length, num_classes])
    model = SequenceLabellingModel(data, target, params)
    batches = batched(train_data, train_target, params.batch_size)

    sess = tf.Session()
    sess.run(tf.initialize_all_variables())for index, batch in enumerate(batches):
        batch_data = batch[0]
        batch_target = batch[1]
        epoch = batch[2]if epoch >= params.epochs:breakfeed = {data: batch_data, target: batch_target}
        error, _ = sess.run([model.error, model.optimize], feed)print('{}: {:3.6f}%'.format(index + 1, 100 * error))

    test_feed = {data: test_data, target: test_target}
    test_error, _ = sess.run([model.error, model.optimize], test_feed)print('Test error: {:3.6f}%'.format(100 * error))import tensorflow as tffrom helpers import lazy_propertyclass BidirectionalSequenceLabellingModel:def __init__(self, data, target, params):
            self.data = data
            self.target = target
            self.params = params
            self.prediction
            self.cost
            self.error
            self.optimize

        @lazy_propertydef length(self):
            used = tf.sign(tf.reduce_max(tf.abs(self.data), reduction_indices=2))
            length = tf.reduce_sum(used, reduction_indices=1)
            length = tf.cast(length, tf.int32)return length

        @lazy_propertydef prediction(self):
            output = self._bidirectional_rnn(self.data, self.length)
            num_classes = int(self.target.get_shape()[2])
            prediction = self._shared_softmax(output, num_classes)return predictiondef _bidirectional_rnn(self, data, length):
            length_64 = tf.cast(length, tf.int64)
            forward, _ = tf.nn.dynamic_rnn(
                cell=self.params.rnn_cell(self.params.rnn_hidden),
                inputs=data,
                dtype=tf.float32,
                sequence_length=length,
                scope='rnn-forward')
            backward, _ = tf.nn.dynamic_rnn(
            cell=self.params.rnn_cell(self.params.rnn_hidden),
            inputs=tf.reverse_sequence(data, length_64, seq_dim=1),
            dtype=tf.float32,
            sequence_length=self.length,
            scope='rnn-backward')
            backward = tf.reverse_sequence(backward, length_64, seq_dim=1)
            output = tf.concat(2, [forward, backward])return outputdef _shared_softmax(self, data, out_size):
            max_length = int(data.get_shape()[1])
            in_size = int(data.get_shape()[2])
            weight = tf.Variable(tf.truncated_normal(
                [in_size, out_size], stddev=0.01))
            bias = tf.Variable(tf.constant(0.1, shape=[out_size]))# Flatten to apply same weights to all time steps.flat = tf.reshape(data, [-1, in_size])
            output = tf.nn.softmax(tf.matmul(flat, weight) + bias)
            output = tf.reshape(output, [-1, max_length, out_size])return output

        @lazy_propertydef cost(self):# Compute cross entropy for each frame.cross_entropy = self.target * tf.log(self.prediction)
            cross_entropy = -tf.reduce_sum(cross_entropy, reduction_indices=2)
            mask = tf.sign(tf.reduce_max(tf.abs(self.target), reduction_indices=2))
            cross_entropy *= mask# Average over actual sequence lengths.cross_entropy = tf.reduce_sum(cross_entropy, reduction_indices=1)
            cross_entropy /= tf.cast(self.length, tf.float32)return tf.reduce_mean(cross_entropy)

        @lazy_propertydef error(self):
            mistakes = tf.not_equal(
                tf.argmax(self.target, 2), tf.argmax(self.prediction, 2))
            mistakes = tf.cast(mistakes, tf.float32)
            mask = tf.sign(tf.reduce_max(tf.abs(self.target), reduction_indices=2))
            mistakes *= mask# Average over actual sequence lengths.mistakes = tf.reduce_sum(mistakes, reduction_indices=1)
            mistakes /= tf.cast(self.length, tf.float32)return tf.reduce_mean(mistakes)

        @lazy_propertydef optimize(self):
            gradient = self.params.optimizer.compute_gradients(self.cost)try:
                limit = self.params.gradient_clipping
                gradient = [
                    (tf.clip_by_value(g, -limit, limit), v)if g is not None else (None, v)for g, v in gradient]except AttributeError:print('No gradient clipping parameter specified.')
            optimize = self.params.optimizer.apply_gradients(gradient)return optimize

 

参考资料:
《面向机器智能的TensorFlow实践》

欢迎加我微信交流:qingxingfengzi
我的微信公众号:qingxingfengzigz
我老婆张幸清的微信公众号:qingqingfeifangz

以上是序列标注、手写小写字母OCR数据集、双向RNN的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
学习Python:2小时的每日学习是否足够?学习Python:2小时的每日学习是否足够?Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Web开发的Python:关键应用程序Web开发的Python:关键应用程序Apr 18, 2025 am 12:20 AM

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

Python vs.C:探索性能和效率Python vs.C:探索性能和效率Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

python在行动中:现实世界中的例子python在行动中:现实世界中的例子Apr 18, 2025 am 12:18 AM

Python在现实世界中的应用包括数据分析、Web开发、人工智能和自动化。1)在数据分析中,Python使用Pandas和Matplotlib处理和可视化数据。2)Web开发中,Django和Flask框架简化了Web应用的创建。3)人工智能领域,TensorFlow和PyTorch用于构建和训练模型。4)自动化方面,Python脚本可用于复制文件等任务。

Python的主要用途:综合概述Python的主要用途:综合概述Apr 18, 2025 am 12:18 AM

Python在数据科学、Web开发和自动化脚本领域广泛应用。1)在数据科学中,Python通过NumPy、Pandas等库简化数据处理和分析。2)在Web开发中,Django和Flask框架使开发者能快速构建应用。3)在自动化脚本中,Python的简洁性和标准库使其成为理想选择。

Python的主要目的:灵活性和易用性Python的主要目的:灵活性和易用性Apr 17, 2025 am 12:14 AM

Python的灵活性体现在多范式支持和动态类型系统,易用性则源于语法简洁和丰富的标准库。1.灵活性:支持面向对象、函数式和过程式编程,动态类型系统提高开发效率。2.易用性:语法接近自然语言,标准库涵盖广泛功能,简化开发过程。

Python:多功能编程的力量Python:多功能编程的力量Apr 17, 2025 am 12:09 AM

Python因其简洁与强大而备受青睐,适用于从初学者到高级开发者的各种需求。其多功能性体现在:1)易学易用,语法简单;2)丰富的库和框架,如NumPy、Pandas等;3)跨平台支持,可在多种操作系统上运行;4)适合脚本和自动化任务,提升工作效率。

每天2小时学习Python:实用指南每天2小时学习Python:实用指南Apr 17, 2025 am 12:05 AM

可以,在每天花费两个小时的时间内学会Python。1.制定合理的学习计划,2.选择合适的学习资源,3.通过实践巩固所学知识,这些步骤能帮助你在短时间内掌握Python。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前By尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前By尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境