python3.6
map(func, *iterables) --> map object<br><br>Make an iterator that computes the function using arguments from<br>each of the iterables. Stops when the shortest iterable is exhausted.<br><br><br>
map(func, *iterables) --> map object
- func 逻辑简单lambda匿名函数,逻辑复杂需自拟;
- *iterables 可迭代对象
- map函数所得的结果也是一个可迭代对象,但是只能遍例一次.
例: 自定义函数模拟内置函数map,列表自增减1及平方
内置函数map实现列表自增减1及平方
li = [1, 2, 3, 4, 5, 6, 7, 8, 9<span style="color: #000000">] </span><span style="color: #008000">#</span><span style="color: #008000"> 自增1</span> <span style="color: #0000ff">print</span>(list(map(<span style="color: #0000ff">lambda</span> x: x + 1<span style="color: #000000">, li))) </span><span style="color: #008000">#</span><span style="color: #008000"> 自减1</span> <span style="color: #0000ff">print</span>(list(map(<span style="color: #0000ff">lambda</span> x: x - 1<span style="color: #000000">, li))) </span><span style="color: #008000">#</span><span style="color: #008000"> 平方</span> <span style="color: #0000ff">print</span><span style="color: #000000">( list( map(</span><span style="color: #0000ff">lambda</span> x: x ** 2<span style="color: #000000">, li) ) )</span>
自定义函数实现
li = [1, 2, 3, 4, 5, 6, 7, 8, 9<span style="color: #000000">] </span><span style="color: #008000">#</span><span style="color: #008000"> 自增1</span> <span style="color: #0000ff">def</span><span style="color: #000000"> add1(x): </span><span style="color: #0000ff">return</span> x + 1 <span style="color: #008000">#</span><span style="color: #008000"> 自减1</span> <span style="color: #0000ff">def</span><span style="color: #000000"> red1(x): </span><span style="color: #0000ff">return</span> x - 1 <span style="color: #008000">#</span><span style="color: #008000"> 平方</span> <span style="color: #0000ff">def</span><span style="color: #000000"> square(x): </span><span style="color: #0000ff">return</span> x ** 2 <span style="color: #0000ff">def</span><span style="color: #000000"> map_test(func, l): tl </span>=<span style="color: #000000"> [] </span><span style="color: #0000ff">for</span> i <span style="color: #0000ff">in</span><span style="color: #000000"> l: tl.append(func(i)) </span><span style="color: #0000ff">return</span><span style="color: #000000"> tl </span><span style="color: #008000">#</span><span style="color: #008000"> 调用上面定义的函数</span> <span style="color: #0000ff">print</span><span style="color: #000000">(map_test(add1, li)) </span><span style="color: #0000ff">print</span><span style="color: #000000">(map_test(red1, li)) </span><span style="color: #0000ff">print</span>(map_test(square, li))
自定义函数+匿名函数实现
li = [1, 2, 3, 4, 5, 6, 7, 8, 9<span style="color: #000000">] </span><span style="color: #0000ff">def</span><span style="color: #000000"> map_test(func, l): tl </span>=<span style="color: #000000"> [] </span><span style="color: #0000ff">for</span> i <span style="color: #0000ff">in</span><span style="color: #000000"> l: tl.append(func(i)) </span><span style="color: #0000ff">return</span><span style="color: #000000"> tl </span><span style="color: #0000ff">print</span>(map_test(<span style="color: #0000ff">lambda</span> x: x + 1<span style="color: #000000">, li)) </span><span style="color: #0000ff">print</span>(map_test(<span style="color: #0000ff">lambda</span> x: x - 1<span style="color: #000000">, li)) </span><span style="color: #0000ff">print</span>(map_test(<span style="color: #0000ff">lambda</span> x: x ** 2, li))
以上是Map的详细内容。更多信息请关注PHP中文网其他相关文章!

Pythonarrayssupportvariousoperations:1)Slicingextractssubsets,2)Appending/Extendingaddselements,3)Insertingplaceselementsatspecificpositions,4)Removingdeleteselements,5)Sorting/Reversingchangesorder,and6)Listcomprehensionscreatenewlistsbasedonexistin

NumPyarraysareessentialforapplicationsrequiringefficientnumericalcomputationsanddatamanipulation.Theyarecrucialindatascience,machinelearning,physics,engineering,andfinanceduetotheirabilitytohandlelarge-scaledataefficiently.Forexample,infinancialanaly

useanArray.ArarayoveralistinpythonwhendeAlingwithHomeSdata,performance-Caliticalcode,orinterFacingWithCcccode.1)同质性data:arrayssavememorywithtypedelements.2)绩效code-performance-clitionalcode-clitadialcode-critical-clitical-clitical-clitical-clitaine code:araysofferferbetterperperperformenterperformanceformanceformancefornalumericalicalialical.3)

不,notalllistoperationsareSupportedByArrays,andviceversa.1)arraysdonotsupportdynamicoperationslikeappendorinsertwithoutresizing,wheremactssperformance.2)listssdonotguaranteeconeeconeconstanttanttanttanttanttanttanttanttimecomplecomecomecomplecomecomecomecomecomecomplecomectaccesslikearrikearraysodo。

toAccesselementsInapythonlist,useIndIndexing,负索引,切片,口头化。1)indexingStartSat0.2)否定indexingAccessesessessessesfomtheend.3)slicingextractsportions.4)iterationerationUsistorationUsisturessoreTionsforloopsoreNumeratorseforeporloopsorenumerate.alwaysCheckListListListListlentePtotoVoidToavoIndexIndexIndexIndexIndexIndExerror。

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

你可以通过使用pyenv、venv和Anaconda来管理不同的Python版本。1)使用pyenv管理多个Python版本:安装pyenv,设置全局和本地版本。2)使用venv创建虚拟环境以隔离项目依赖。3)使用Anaconda管理数据科学项目中的Python版本。4)保留系统Python用于系统级任务。通过这些工具和策略,你可以有效地管理不同版本的Python,确保项目顺利运行。

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基于基于duetoc的iMplation,2)2)他们的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函数函数函数函数构成和稳定性构成和稳定性的操作,制造


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

Atom编辑器mac版下载
最流行的的开源编辑器

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。