这篇文章主要简单分析了linux下system函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
简单分析了linux下system函数的相关内容,具体内容如下
int libc_system (const char *line) { if (line == NULL) /* Check that we have a command processor available. It might not be available after a chroot(), for example. */ return do_system ("exit 0") == 0; return do_system (line); } weak_alias (libc_system, system)
代码位于glibc/sysdeps/posix/system.c,这里system是libc_system的弱别名,而libc_system是do_system的前端函数,进行了参数的检查,接下来看do_system函数。
static int do_system (const char *line) { int status, save; pid_t pid; struct sigaction sa; #ifndef _LIBC_REENTRANT struct sigaction intr, quit; #endif sigset_t omask; sa.sa_handler = SIG_IGN; sa.sa_flags = 0; sigemptyset (&sa.sa_mask); DO_LOCK (); if (ADD_REF () == 0) { if (sigaction (SIGINT, &sa, &intr) < 0) { (void) SUB_REF (); goto out; } if (sigaction (SIGQUIT, &sa, &quit) < 0) { save = errno; (void) SUB_REF (); goto out_restore_sigint; } } DO_UNLOCK (); /* We reuse the bitmap in the 'sa' structure. */ sigaddset (&sa.sa_mask, SIGCHLD); save = errno; if (sigprocmask (SIG_BLOCK, &sa.sa_mask, &omask) < 0) { #ifndef _LIBC if (errno == ENOSYS) set_errno (save); else #endif { DO_LOCK (); if (SUB_REF () == 0) { save = errno; (void) sigaction (SIGQUIT, &quit, (struct sigaction *) NULL); out_restore_sigint: (void) sigaction (SIGINT, &intr, (struct sigaction *) NULL); set_errno (save); } out: DO_UNLOCK (); return -1; } } #ifdef CLEANUP_HANDLER CLEANUP_HANDLER; #endif #ifdef FORK pid = FORK (); #else pid = fork (); #endif if (pid == (pid_t) 0) { /* Child side. */ const char *new_argv[4]; new_argv[0] = SHELL_NAME; new_argv[1] = "-c"; new_argv[2] = line; new_argv[3] = NULL; /* Restore the signals. */ (void) sigaction (SIGINT, &intr, (struct sigaction *) NULL); (void) sigaction (SIGQUIT, &quit, (struct sigaction *) NULL); (void) sigprocmask (SIG_SETMASK, &omask, (sigset_t *) NULL); INIT_LOCK (); /* Exec the shell. */ (void) execve (SHELL_PATH, (char *const *) new_argv, environ); _exit (127); } else if (pid < (pid_t) 0) /* The fork failed. */ status = -1; else /* Parent side. */ { /* Note the system() is a cancellation point. But since we call waitpid() which itself is a cancellation point we do not have to do anything here. */ if (TEMP_FAILURE_RETRY (waitpid (pid, &status, 0)) != pid) status = -1; } #ifdef CLEANUP_HANDLER CLEANUP_RESET; #endif save = errno; DO_LOCK (); if ((SUB_REF () == 0 && (sigaction (SIGINT, &intr, (struct sigaction *) NULL) | sigaction (SIGQUIT, &quit, (struct sigaction *) NULL)) != 0) || sigprocmask (SIG_SETMASK, &omask, (sigset_t *) NULL) != 0) { #ifndef _LIBC /* glibc cannot be used on systems without waitpid. */ if (errno == ENOSYS) set_errno (save); else #endif status = -1; } DO_UNLOCK (); return status; } do_system
首先函数设置了一些信号处理程序,来处理SIGINT和SIGQUIT信号,此处我们不过多关心,关键代码段在这里
#ifdef FORK pid = FORK (); #else pid = fork (); #endif if (pid == (pid_t) 0) { /* Child side. */ const char *new_argv[4]; new_argv[0] = SHELL_NAME; new_argv[1] = "-c"; new_argv[2] = line; new_argv[3] = NULL; /* Restore the signals. */ (void) sigaction (SIGINT, &intr, (struct sigaction *) NULL); (void) sigaction (SIGQUIT, &quit, (struct sigaction *) NULL); (void) sigprocmask (SIG_SETMASK, &omask, (sigset_t *) NULL); INIT_LOCK (); /* Exec the shell. */ (void) execve (SHELL_PATH, (char *const *) new_argv, environ); _exit (127); } else if (pid < (pid_t) 0) /* The fork failed. */ status = -1; else /* Parent side. */ { /* Note the system() is a cancellation point. But since we call waitpid() which itself is a cancellation point we do not have to do anything here. */ if (TEMP_FAILURE_RETRY (waitpid (pid, &status, 0)) != pid) status = -1; }
首先通过前端函数调用系统调用fork产生一个子进程,其中fork有两个返回值,对父进程返回子进程的pid,对子进程返回0。所以子进程执行6-24行代码,父进程执行30-35行代码。
子进程的逻辑非常清晰,调用execve执行SHELL_PATH指定的程序,参数通过new_argv传递,环境变量为全局变量environ。
其中SHELL_PATH和SHELL_NAME定义如下
#define SHELL_PATH "/bin/sh" /* Path of the shell. */ #define SHELL_NAME "sh" /* Name to give it. */
其实就是生成一个子进程调用/bin/sh -c "命令"来执行向system传入的命令。
下面其实是我研究system函数的原因与重点:
在CTF的pwn题中,通过栈溢出调用system函数有时会失败,听师傅们说是环境变量被覆盖,但是一直都是懵懂,今天深入学习了一下,总算搞明白了。
在这里system函数需要的环境变量储存在全局变量environ中,那么这个变量的内容是什么呢。
environ是在glibc/csu/libc-start.c中定义的,我们来看几个关键语句。
# define LIBC_START_MAIN libc_start_main
libc_start_main是_start调用的函数,这涉及到程序开始时的一些初始化工作,对这些名词不了解的话可以看一下这篇文章。接下来看LIBC_START_MAIN函数。
STATIC int LIBC_START_MAIN (int (*main) (int, char **, char ** MAIN_AUXVEC_DECL), int argc, char **argv, #ifdef LIBC_START_MAIN_AUXVEC_ARG ElfW(auxv_t) *auxvec, #endif typeof (main) init, void (*fini) (void), void (*rtld_fini) (void), void *stack_end) { /* Result of the 'main' function. */ int result; libc_multiple_libcs = &_dl_starting_up && !_dl_starting_up; #ifndef SHARED char **ev = &argv[argc + 1]; environ = ev; /* Store the lowest stack address. This is done in ld.so if this is the code for the DSO. */ libc_stack_end = stack_end; ...... /* Nothing fancy, just call the function. */ result = main (argc, argv, environ MAIN_AUXVEC_PARAM); #endif exit (result); }
我们可以看到,在没有define SHARED的情况下,在第19行定义了environ的值。启动程序调用LIBC_START_MAIN之前,会先将环境变量和argv中的字符串保存起来(其实是保存到栈上),然后依次将环境变量中各项字符串的地址,argv中各项字符串的地址和argc入栈,所以环境变量数组一定位于argv数组的正后方,以一个空地址间隔。所以第17行的&argv[argc + 1]语句就是取环境变量数组在栈上的首地址,保存到ev中,最终保存到environ中。第203行调用main函数,会将environ的值入栈,这个被栈溢出覆盖掉没什么问题,只要保证environ中的地址处不被覆盖即可。
所以,当栈溢出的长度过大,溢出的内容覆盖了environ中地址中的重要内容时,调用system函数就会失败。具体环境变量距离溢出地址有多远,可以通过在_start中下断查看。
以上是linux下关于system函数的简单分析的详细内容。更多信息请关注PHP中文网其他相关文章!

进入Linux恢复模式的步骤是:1.重启系统并按特定键进入GRUB菜单;2.选择带有(recoverymode)的选项;3.在恢复模式菜单中选择操作,如fsck或root。恢复模式允许你以单用户模式启动系统,进行文件系统检查和修复、编辑配置文件等操作,帮助解决系统问题。

Linux的核心组件包括内核、文件系统、Shell和常用工具。1.内核管理硬件资源并提供基本服务。2.文件系统组织和存储数据。3.Shell是用户与系统交互的接口。4.常用工具帮助完成日常任务。

Linux的基本结构包括内核、文件系统和Shell。1)内核管理硬件资源,使用uname-r查看版本。2)EXT4文件系统支持大文件和日志,使用mkfs.ext4创建。3)Shell如Bash提供命令行交互,使用ls-l列出文件。

Linux系统管理和维护的关键步骤包括:1)掌握基础知识,如文件系统结构和用户管理;2)进行系统监控与资源管理,使用top、htop等工具;3)利用系统日志进行故障排查,借助journalctl等工具;4)编写自动化脚本和任务调度,使用cron工具;5)实施安全管理与防护,通过iptables配置防火墙;6)进行性能优化与最佳实践,调整内核参数和养成良好习惯。

Linux维护模式通过在启动时添加init=/bin/bash或single参数进入。1.进入维护模式:编辑GRUB菜单,添加启动参数。2.重新挂载文件系统为读写模式:mount-oremount,rw/。3.修复文件系统:使用fsck命令,如fsck/dev/sda1。4.备份数据并谨慎操作,避免数据丢失。

本文探讨如何在Debian系统上提升Hadoop数据处理效率。优化策略涵盖硬件升级、操作系统参数调整、Hadoop配置修改以及高效算法和工具的运用。一、硬件资源强化确保所有节点硬件配置一致,尤其关注CPU、内存和网络设备性能。选择高性能硬件组件对于提升整体处理速度至关重要。二、操作系统调优文件描述符和网络连接数:修改/etc/security/limits.conf文件,增加系统允许同时打开的文件描述符和网络连接数上限。JVM参数调整:在hadoop-env.sh文件中调整

本指南将指导您学习如何在Debian系统中使用Syslog。Syslog是Linux系统中用于记录系统和应用程序日志消息的关键服务,它帮助管理员监控和分析系统活动,从而快速识别并解决问题。一、Syslog基础知识Syslog的核心功能包括:集中收集和管理日志消息;支持多种日志输出格式和目标位置(例如文件或网络);提供实时日志查看和过滤功能。二、安装和配置Syslog(使用Rsyslog)Debian系统默认使用Rsyslog。您可以通过以下命令安装:sudoaptupdatesud

选择适合Debian系统的Hadoop版本,需要综合考虑以下几个关键因素:一、稳定性与长期支持:对于追求稳定性和安全性的用户,建议选择Debian稳定版,例如Debian11(Bullseye)。该版本经过充分测试,拥有长达五年的支持周期,能够确保系统稳定运行。二、软件包更新速度:如果您需要使用最新的Hadoop功能和特性,则可以考虑Debian的不稳定版(Sid)。但需注意,不稳定版可能存在兼容性问题和稳定性风险。三、社区支持与资源:Debian拥有庞大的社区支持,可以提供丰富的文档和


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Atom编辑器mac版下载
最流行的的开源编辑器

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。