这篇文章主要介绍了Python 稀疏矩阵-sparse 存储和转换的相关资料,需要的朋友可以参考下
稀疏矩阵-sparsep
from scipy import sparse
稀疏矩阵的储存形式
在科学与工程领域中求解线性模型时经常出现许多大型的矩阵,这些矩阵中大部分的元素都为0,被称为稀疏矩阵。用NumPy的ndarray数组保存这样的矩阵,将很浪费内存,由于矩阵的稀疏特性,可以通过只保存非零元素的相关信息,从而节约内存的使用。此外,针对这种特殊结构的矩阵编写运算函数,也可以提高矩阵的运算速度。
scipy.sparse库中提供了多种表示稀疏矩阵的格式,每种格式都有不同的用处,其中dok_matrix和lil_matrix适合逐渐添加元素。
dok_matrix从dict继承,它采用字典保存矩阵中不为0的元素:字典的键是一个保存元素(行,列)信息的元组,其对应的值为矩阵中位于(行,列)中的元素值。显然字典格式的稀疏矩阵很适合单个元素的添加、删除和存取操作。通常用来逐渐添加非零元素,然后转换成其它支持快速运算的格式。
a = sparse.dok_matrix((10, 5)) a[2:5, 3] = 1.0, 2.0, 3.0 print a.keys() print a.values()
[(2, 3), (3, 3), (4, 3)] [1.0, 2.0, 3.0]
lil_matrix使用两个列表保存非零元素。data保存每行中的非零元素,rows保存非零元素所在的列。这种格式也很适合逐个添加元素,并且能快速获取行相关的数据。
b = sparse.lil_matrix((10, 5)) b[2, 3] = 1.0 b[3, 4] = 2.0 b[3, 2] = 3.0 print b.data print b.rows
[[] [] [1.0] [3.0, 2.0] [] [] [] [] [] []] [[] [] [3] [2, 4] [] [] [] [] [] []]
coo_matrix采用三个数组row、col和data保存非零元素的信息。这三个数组的长度相同,row保存元素的行,col保存元素的列,data保存元素的值。coo_matrix不支持元素的存取和增删,一旦创建之后,除了将之转换成其它格式的矩阵,几乎无法对其做任何操作和矩阵运算。
coo_matrix支持重复元素,即同一行列坐标可以出现多次,当转换为其它格式的矩阵时,将对同一行列坐标对应的多个值进行求和。在下面的例子中,(2, 3)对应两个值:1和10,将其转换为ndarray数组时这两个值加在一起,所以最终矩阵中(2, 3)坐标上的值为11。
许多稀疏矩阵的数据都是采用这种格式保存在文件中的,例如某个CSV文件中可能有这样三列:“用户ID,商品ID,评价值”。采用numpy.loadtxt或pandas.read_csv将数据读入之后,可以通过coo_matrix快速将其转换成稀疏矩阵:矩阵的每行对应一位用户,每列对应一件商品,而元素值为用户对商品的评价。
row = [2, 3, 3, 2] col = [3, 4, 2, 3] data = [1, 2, 3, 10] c = sparse.coo_matrix((data, (row, col)), shape=(5, 6)) print c.col, c.row, c.data print c.toarray()
[3 4 2 3] [2 3 3 2] [ 1 2 3 10] [[ 0 0 0 0 0 0] [ 0 0 0 0 0 0] [ 0 0 0 11 0 0] [ 0 0 3 0 2 0] [ 0 0 0 0 0 0]]
个人操作中选择,coo_matrix 选在因为涉及稀疏矩阵运算,但是如果不用其他形式存储则复杂度太高(时间和空间)1000*1000的matrix大约话2h,也是要命了。无奈想到了Pajek软件中数据的输入格式三元组:
所以想到将自己的数据处理成类似的三元组!
即“matrix矩阵”—>"tuple三元组"—>"sparseMatrix2tuple"—>"scipy.sparse"
以上是Python稀疏矩阵之sparse存储和转换的详细介绍的详细内容。更多信息请关注PHP中文网其他相关文章!

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...

Python3.6环境下加载Pickle文件报错:ModuleNotFoundError:Nomodulenamed...


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

WebStorm Mac版
好用的JavaScript开发工具

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。