搜索
首页后端开发Python教程Python如何对Csv文件操作的实例代码分享(图)

这篇文章主要介绍了使用Python对Csv文件操作实例代码,非常具有实用价值,需要的朋友可以参考下

csv是Comma-Separated Values的缩写,是用文本文件形式储存的表格数据,比如如下的表格:

就可以存储为csv文件,文件内容是:

No.,Name,Age,Score
1,mayi,18,99
2,jack,21,89
3,tom,25,95
4,rain,19,80

假设上述csv文件保存为"test.csv"

1.读文件

如何用Python像操作Excel一样提取其中的一列,即一个字段,利用Python自带的csv模块,有两种方法可以实现:

第一种方法使用reader函数,接收一个可迭代的对象(比如csv文件),能返回一个生成器,就可以从其中解析出csv的内容:比如下面的代码可以读取csv的全部内容,以行为单位:

#!/usr/bin/python3
# -*- conding:utf-8 -*-
author = 'mayi'

import csv

#读
with open("test.csv", "r", encoding = "utf-8") as f:
  reader = csv.reader(f)
  rows = [row for row in reader]

print(rows)

得到:

[['No.', 'Name', 'Age', 'Score'],
 ['1', 'mayi', '18', '99'],
 ['2', 'jack', '21', '89'],
 ['3', 'tom', '25', '95'],
 ['4', 'rain', '19', '80']]

要提取其中某一列,可以用下面的代码:

#!/usr/bin/python3
# -*- conding:utf-8 -*-
author = 'mayi'

import csv

#读取第二列的内容
with open("test.csv", "r", encoding = "utf-8") as f:
  reader = csv.reader(f)
  column = [row[1] for row in reader]

print(column)

得到:

['Name', 'mayi', 'jack', 'tom', 'rain']

注意从csv读出的都是str类型。这种方法要事先知道列的序号,比如Name在第2列,而不能根据'Name'这个标题查询。这时可以采用第二种方法:

第二种方法是使用DictReader,和reader函数类似,接收一个可迭代的对象,能返回一个生成器,但是返回的每一个单元格都放在一个字典的值内,而这个字典的键则是这个单元格的标题(即列头)。用下面的代码可以看到DictReader的结构:

# -*- conding:utf-8 -*-
author = 'mayi'

import csv

#读
with open("test.csv", "r", encoding = "utf-8") as f:
  reader = csv.DictReader(f)
  column = [row for row in reader]

print(column)

得到:

[{'No.': '1', 'Age': '18', 'Score': '99', 'Name': 'mayi'},
 {'No.': '2', 'Age': '21', 'Score': '89', 'Name': 'jack'},
 {'No.': '3', 'Age': '25', 'Score': '95', 'Name': 'tom'},
 {'No.': '4', 'Age': '19', 'Score': '80', 'Name': 'rain'}]

如果我们想用DictReader读取csv的某一列,就可以用列的标题查询:

#!/usr/bin/python3
# -*- conding:utf-8 -*-
author = 'mayi'

import csv

#读取Name列的内容
with open("test.csv", "r", encoding = "utf-8") as f:
  reader = csv.DictReader(f)
  column = [row['Name'] for row in reader]
print(column)

得到:

['mayi', 'jack', 'tom', 'rain']

2.写文件

读文件时,我们把csv文件读入列表中,写文件时会把列表中的元素写入到csv文件中。

#!/usr/bin/python3
# -*- conding:utf-8 -*-
author = 'mayi'

import csv

#写:追加
row = ['5', 'hanmeimei', '23', '81']
out = open("test.csv", "a", newline = "")
csv_writer = csv.writer(out, dialect = "excel")
csv_writer.writerow(row)

得到:

以上是Python如何对Csv文件操作的实例代码分享(图)的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python与C:学习曲线和易用性Python与C:学习曲线和易用性Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python vs. C:内存管理和控制Python vs. C:内存管理和控制Apr 19, 2025 am 12:17 AM

Python和C 在内存管理和控制方面的差异显着。 1.Python使用自动内存管理,基于引用计数和垃圾回收,简化了程序员的工作。 2.C 则要求手动管理内存,提供更多控制权但增加了复杂性和出错风险。选择哪种语言应基于项目需求和团队技术栈。

科学计算的Python:详细的外观科学计算的Python:详细的外观Apr 19, 2025 am 12:15 AM

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python和C:找到合适的工具Python和C:找到合适的工具Apr 19, 2025 am 12:04 AM

选择Python还是C 取决于项目需求:1)Python适合快速开发、数据科学和脚本编写,因其简洁语法和丰富库;2)C 适用于需要高性能和底层控制的场景,如系统编程和游戏开发,因其编译型和手动内存管理。

数据科学和机器学习的Python数据科学和机器学习的PythonApr 19, 2025 am 12:02 AM

Python在数据科学和机器学习中的应用广泛,主要依赖于其简洁性和强大的库生态系统。1)Pandas用于数据处理和分析,2)Numpy提供高效的数值计算,3)Scikit-learn用于机器学习模型构建和优化,这些库让Python成为数据科学和机器学习的理想工具。

学习Python:2小时的每日学习是否足够?学习Python:2小时的每日学习是否足够?Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Web开发的Python:关键应用程序Web开发的Python:关键应用程序Apr 18, 2025 am 12:20 AM

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

Python vs.C:探索性能和效率Python vs.C:探索性能和效率Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热工具

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能