搜索
首页后端开发Python教程python提取那些被“标记”照片的实例详解

这篇文章主要介绍了用python找出那些被“标记”的照片的相关资料,需要的朋友可以参考下

源码传送门

环境准备

下面的两个第三方模块都可以直接通过pip快速安装,这里使用py36作为运行环境。

  • python3.6

  • requests

  • exifread

思路

  1. 遍历目录

  2. 拉取数据集合

  3. 遍历集合取得exif

  4. exif信息整理,并获取实体地址

  5. 拷贝文件到结果样本目录

  6. 生成json报告文件

基础知识

下面是现今相片中会存在与GPS相关的关键字,大牛亦可一比带过~ [参考]

{
 "GPSVersionID": "GPS版本",
 "GPSLatitudeRef": "南北纬",
 "GPSLatitude": "纬度",
 "GPSLongitudeRef": "东西经",
 "GPSLongitude": "经度",
 "GPSAltitudeRef": "海拔参照值",
 "GPSAltitude": "海拔",
 "GPSTimeStamp": "GPS时间戳",
 "GPSSatellites": "测量的卫星",
 "GPSStatus": "接收器状态",
 "GPSMeasureMode": "测量模式",
 "GPSDOP": "测量精度",
 "GPSSpeedRef": "速度单位",
 "GPSSpeed": "GPS接收器速度",
 "GPSTrackRef": "移动方位参照",
 "GPSTrack": "移动方位",
 "GPSImgDirectionRef": "图像方位参照",
 "GPSImgDirection": "图像方位",
 "GPSMapDatum": "地理测量资料",
 "GPSDestLatitudeRef": "目标纬度参照",
 "GPSDestLatitude": "目标纬度",
 "GPSDestLongitudeRef": "目标经度参照",
 "GPSDestLongitude": "目标经度",
 "GPSDestBearingRef": "目标方位参照",
 "GPSDestBearing": "目标方位",
 "GPSDestDistanceRef": "目标距离参照",
 "GPSDestDistance": "目标距离",
 "GPSProcessingMethod": "GPS处理方法名",
 "GPSAreaInformation": "GPS区功能变数名",
 "GPSDateStamp": "GPS日期",
 "GPSDifferential": "GPS修正"
}

初始化

考虑到exifread的模块中有大量的logging输出,这里将它的level级别调到最高。 然后下边的KEY是某站在高德地图API的时候遗留下来的 我也很尴尬。。就当福利了

import os
import time
import json
import random
import logging
import requests
import exifread
logging.basicConfig(level=logging.CRITICAL)
KEY = "169d2dd7829fe45690fabec812d05bc3"

主逻辑函数

def main():
 # 预设后缀列表
 types = ["bmp", "jpg", "tiff", "gif", "png"]
 #结果数据集合
 picex = []
 # 文件存储路径
 saves = "$" + input("| SavePath: ").strip()
 # 文件搜索路径 并遍历所有文件返回文件路径列表
 pools = jpgwalk(input("| FindPath: "), types)
 #存储目录
 savep = "%s/%s" % (os.getcwd().replace("\\", "/"), saves)
 if savep in pools:
 pools.remove(savep)
 # 遍历数据集并获取exif信息
 for path in pools:
 res = getEXIF(path)
 if res:
  picex.append(res)
 # 结果报告
 print("| Result %s" % len(picex))
 # 如果存在结果 保存结果到json并讲相关图片复制到该目录下
 if picex:
 #创建目录
 if not os.path.exists(saves):
  os.mkdir(saves)
 #生成一个4格缩进的json文件 
 with open("%s/%s.json" % (saves, saves), "wb") as f:
  f.write(json.dumps(picex, ensure_ascii=False, indent=4).encode("utf8"))
 #copy图像到该目录
 for item in picex:
  source_path = item["Filename"]
  with open("%s/%s" % (saves, source_path.split("/")[-1]), "wb") as f_in:
  with open(source_path, "rb") as f_out:
   f_in.write(f_out.read())

遍历方法

遍历指定及其所有下级目录,并返回全部的图片的路径集合,这里要注意的是每次扫描后的拷贝行为都会生成缓存,所以通过指定 $ 来避开。

# 获取指导目录全部的图片路径
def jpgwalk(path, types):
 _start = time.time()
 _pools = []
 # 遍历该目录 并判断files后缀 如符合规则则拼接路径
 for _root, _dirs, _files in os.walk(path):
 _pools.extend([_root.replace("\\", "/") + "/" +
   _item for _item in _files if _item.split(".")[-1].lower() in types and "$" not in _root])
 #报告消耗时间
 print("| Find %s \n| Time %.3fs" % (len(_pools), time.time() - _start))
 return _pools

经纬度格式化

度分秒转浮点,方便api调用查询,因为存在一些诡异的数据比如 1/0,所以默认返回0

def cg(i):
 try:
 _ii = [float(eval(x)) for x in i[1:][:-1].split(', ')]
 _res = _ii[0] + _ii[1] / 60 + _ii[2] / 3600
 return _res
 except ZeropisionError:
 return 0

EXIF信息整理

考虑到大部分的设备还未开始支持朝向、速度、测量依据等关键字,这里暂时只使用比较常见的,如有需要的朋友可以自行添加。毕竟得到的信息越多对社工有更大的帮助。

def getEXIF(filepath):
 #基础关键字
 _showlist = [
 'GPS GPSDOP',
 'GPS GPSMeasureMode',
 'GPS GPSAltitudeRef',
 'GPS GPSAltitude',
 'Image Software',
 'Image Model',
 'Image Make'
 ]
 #GPS关键字
 _XYlist = ["GPS GPSLatitude", "GPS GPSLongitude"]
 #时间关键字
 _TimeList = ["EXIF DateTimeOrigina", "Image DateTime", "GPS GPSDate"]
 #初始化结果字典
 _infos = {
 'Filename': filepath
 }
 with open(filepath, "rb") as _files:
 _tags = None
 # 尝试去的EXIF信息
 try:
  _tags = exifread.process_file(_files)
 except KeyError:
  return
 # 判断是否存在地理位置信息
 _tagkeys = _tags.keys()
 if _tags and len(set(_tagkeys) & set(_XYlist)) == 2 and cg(str(_tags["GPS GPSLongitude"])) != 0.0:
  for _item in sorted(_tagkeys):
  if _item in _showlist:
   _infos[_item.split()[-1]] = str(_tags[_item]).strip()
  # 经纬度取值
  _infos["GPS"] = (cg(str(_tags["GPS GPSLatitude"])) * float(1.0 if str(_tags.get("GPS GPSLatitudeRef", "N")) == "N" else -1.0),
    cg(str(_tags["GPS GPSLongitude"])) * float(1.0 if str(_tags.get("GPS GPSLongitudeRef", "E")) == "E" else -1.0))
  # 获取实体地址
  _infos["address"] = address(_infos["GPS"])
  # 获取照片海拔高度
  if "GPS GPSAltitudeRef" in _tagkeys:
  try:
   _infos["GPSAltitude"] = eval(_infos["GPSAltitude"])
  except ZeropisionError:
   _infos["GPSAltitude"] = 0
  _infos["GPSAltitude"] = "距%s%.2f米" % ("地面" if int(
   _infos["GPSAltitudeRef"]) == 1 else "海平面", _infos["GPSAltitude"])
  del _infos["GPSAltitudeRef"]
  # 获取可用时间
  _timeitem = list(set(_TimeList) & set(_tagkeys))
  if _timeitem:
  _infos["Dates"] = str(_tags[_timeitem[0]])
  return _infos

地址转换

一个简单的爬虫,调用高德地图api进行坐标转换,考虑到原本是跨域,这里添加基础的反防爬代码。这里有个小细节,海外的一律都取不到(包括台湾),可以通过更换googlemap的api来实现全球查询。

def address(gps):
 global KEY
 try:
 # 随机UA
 _ulist = [
  "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.1 (KHTML, like Gecko) Chrome/14.0.835.163 Safari/535.1",
  "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:6.0) Gecko/20100101 Firefox/6.0",
  "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0; InfoPath.2; .NET4.0C; .NET4.0E; .NET CLR 2.0.50727; 360SE)",
  "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_0) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11",
  "Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_8; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50",
  "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Win64; x64; Trident/5.0; .NET CLR 2.0.50727; SLCC2; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; InfoPath.3; .NET4.0C; Tablet PC 2.0; .NET4.0E)",
  "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0)",
  "Mozilla/5.0 (X11; U; Linux i686; rv:1.7.3) Gecko/20040913 Firefox/0.10",
  "Opera/9.80 (Macintosh; Intel Mac OS X 10.6.8; U; ja) Presto/2.10.289 Version/12.00",
  "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/45.0.2454.93 Safari/537.36"
 ]
 # 伪造header
 _header = {
  "User-Agent": random.choice(_ulist),
  "Accept": "text/javascript, application/javascript, application/ecmascript, application/x-ecmascript, */*; q=0.01",
  "Accept-Encoding": "gzip, deflate, sdch",
  "Accept-Language": "zh-CN,zh;q=0.8",
  "Referer": "http://www.gpsspg.com",
 }
 _res = requests.get(
  "http://restapi.amap.com/v3/geocode/regeo?key={2}&s=rsv3&location={1},{0}&platform=JS&logversion=2.0&sdkversion=1.3&appname=http%3A%2F%2Fwww.gpsspg.com%2Fiframe%2Fmaps%2Famap_161128.htm%3Fmapi%3D3&csid=945C5A2C-E67F-4362-B881-9608D9BC9913".format(gps[0], gps[1], KEY), headers=_header, timeout=(5, 5))
 _json = _res.json()
 # 判断是否取得数据
 if _json and _json["status"] == "1" and _json["info"] == "OK":
  # 返回对应地址
  return _json.get("regeocode").get("formatted_address")
 except Exception as e:
 pass

实例

运行该代码 然后输入保存文件夹名和扫描位置即可

这边可以看到8019张中有396张存在有效的地理位置,打码的地方就不解释了,各位老司机~后期打算加入图像识别,和相似度识别。

下面给大家分享小编收集整理的python专题知识:

python基本语法 

python多线程学习教程 

python排序算法大全

以上是python提取那些被“标记”照片的实例详解的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
详细讲解Python之Seaborn(数据可视化)详细讲解Python之Seaborn(数据可视化)Apr 21, 2022 pm 06:08 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

详细了解Python进程池与进程锁详细了解Python进程池与进程锁May 10, 2022 pm 06:11 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

Python自动化实践之筛选简历Python自动化实践之筛选简历Jun 07, 2022 pm 06:59 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

归纳总结Python标准库归纳总结Python标准库May 03, 2022 am 09:00 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于标准库总结的相关问题,下面一起来看一下,希望对大家有帮助。

Python数据类型详解之字符串、数字Python数据类型详解之字符串、数字Apr 27, 2022 pm 07:27 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

分享10款高效的VSCode插件,总有一款能够惊艳到你!!分享10款高效的VSCode插件,总有一款能够惊艳到你!!Mar 09, 2021 am 10:15 AM

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

详细介绍python的numpy模块详细介绍python的numpy模块May 19, 2022 am 11:43 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

python中文是什么意思python中文是什么意思Jun 24, 2019 pm 02:22 PM

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。