前言
正则表达式的基础知识就不说了,有兴趣的可以点击这里,提取一般分两种情况,一种是提取在文本中提取单个位置的字符串,另一种是提取连续多个位置的字符串。日志分析会遇到这种情况,下面我会分别讲一下对应的方法。
一、单个位置的字符串提取
这种情况我们可以使用(.+?)这个正则表达式来提取。 举例,一个字符串"a123b",如果我们想提取ab之间的值123,可以使用findall配合正则表达式,这样会返回一个包含所以符合情况的list。
代码如下:
import re str = "a123b" print re.findall(r"a(.+?)b",str)# 输出['123']
1.1贪婪和非贪婪匹配
如果我们有一个字符串”a123b456b”,如果我们想匹配a和最后一个b之间的所有值而非a和第一个出现的b之间的值,可以用?来控制正则贪婪和非贪婪匹配的情况。
代码如下:
import re str = "a123b456b" print re.findall(r"a(.+?)b", str) #输出['123']#?控制只匹配0或1个,所以只会输出和最近的b之间的匹配情况 print re.findall(r"a(.+)b", str) #输出['123b456'] print re.findall(r"a(.*)b", str) #输出['123b456']
1.2多行匹配
如果你要多行匹配,那么需要加上re.S和re.M标志. 加上re.S后。将会匹配换行符,默认.不会匹配换行符。
代码如下:
str = "a23b\na34b" re.findall(r"a(\d+)b.+a(\d+)b", str) #输出[] #因为不能处理str中间有\n换行的情况 re.findall(r"a(\d+)b.+a(\d+)b", str, re.S) #s输出[('23', '34')]
加上re.M后,^$标志将会匹配每一行,默认^和$只会匹配第一行。
代码如下:
str = "a23b\na34b" re.findall(r"^a(\d+)b", str) #输出['23'] re.findall(r"^a(\d+)b", str, re.M) #输出['23', '34']
二、连续多个位置的字符串提取
这种情况我们可以使用
(?P<name>…)
这个正则表达式来提取。举例,如果我们有一行webserver的access日志:
'192.168.0.1 25/Oct/2012:14:46:34 "GET /api HTTP/1.1" 200 44 "http://abc.com/search" "Mozilla/5.0"'
,我们想提取这行日志里面所有的内容,可以写多个
(?P<name>expr)
来提取,其中name可以更改为你为该位置字符串命名的变量,expr改成提取位置的正则即可。
代码如下:
import re line ='192.168.0.1 25/Oct/2012:14:46:34 "GET /api HTTP/1.1" 200 44 "http://abc.com/search" "Mozilla/5.0"' reg = re.compile('^(?P<remote_ip>[^ ]*) (?P<date>[^ ]*) "(?P<request>[^"]*)" (?P<status>[^ ]*) (?P<size>[^ ]*) "(?P<referrer>[^"]*)" "(?P<user_agent>[^"]*)"') regMatch = reg.match(line) linebits = regMatch.groupdict() print linebits for k, v in linebits.items() : print k+": "+v
输出的结果为:
status: 200 referrer: request: GET /api HTTP/1.1 user_agent: Mozilla/5.0 date: 25/Oct/2012:14:46:34size: 44 remote_ip: 192.168.0.1
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流。
以上是python中使用正则表达式提取字符串的方法的详细内容。更多信息请关注PHP中文网其他相关文章!

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python和C 在内存管理和控制方面的差异显着。 1.Python使用自动内存管理,基于引用计数和垃圾回收,简化了程序员的工作。 2.C 则要求手动管理内存,提供更多控制权但增加了复杂性和出错风险。选择哪种语言应基于项目需求和团队技术栈。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

选择Python还是C 取决于项目需求:1)Python适合快速开发、数据科学和脚本编写,因其简洁语法和丰富库;2)C 适用于需要高性能和底层控制的场景,如系统编程和游戏开发,因其编译型和手动内存管理。

Python在数据科学和机器学习中的应用广泛,主要依赖于其简洁性和强大的库生态系统。1)Pandas用于数据处理和分析,2)Numpy提供高效的数值计算,3)Scikit-learn用于机器学习模型构建和优化,这些库让Python成为数据科学和机器学习的理想工具。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SublimeText3汉化版
中文版,非常好用

Dreamweaver Mac版
视觉化网页开发工具

Atom编辑器mac版下载
最流行的的开源编辑器

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。