搜索
首页后端开发Python教程利用python批量检查网站的可用性

当大家的站点越来越来越多的时候会发现管理起来也挺复杂的,所以这篇文章给大家分享下利用python批量检查网站的可用性的功能,对大家管理网站具有很实用的价值,有需要的朋友可以参考借鉴。

">

前言

随着站点的增多,管理复杂性也上来了,俗话说:人多了不好带,我发现站点多了也不好管,因为这些站点里有重要的也有不重要的,重要核心的站点当然就管理的多一些,像一些万年都不出一次问题的,慢慢就被自己都淡忘了,冷不丁那天出个问题,还的手忙脚乱的去紧急处理,所以规范的去管理这些站点是很有必要的,今天我们就做第一步,不管大站小站,先统一把监控做起来,先不说业务情况,最起码那个站点不能访问了,要第一时间报出来,别等着业务方给你反馈,就显得我们不够专业了,那接下来我们看看如果用python实现多网站的可用性监控,脚本如下:

#!/usr/bin/env python
 
 
import pickle, os, sys, logging
from httplib import HTTPConnection, socket
from smtplib import SMTP
 
def email_alert(message, status):
 fromaddr = 'xxx@163.com'
 toaddrs = 'xxxx@qq.com'
 
 server = SMTP('smtp.163.com:25')
 server.starttls()
 server.login('xxxxx', 'xxxx')
 server.sendmail(fromaddr, toaddrs, 'Subject: %s\r\n%s' % (status, message))
 server.quit()
 
def get_site_status(url):
 response = get_response(url)
 try:
  if getattr(response, 'status') == 200:
   return 'up'
 except AttributeError:
  pass
 return 'down'
  
def get_response(url):
 try:
  conn = HTTPConnection(url)
  conn.request('HEAD', '/')
  return conn.getresponse()
 except socket.error:
  return None
 except:
  logging.error('Bad URL:', url)
  exit(1)
  
def get_headers(url):
 response = get_response(url)
 try:
  return getattr(response, 'getheaders')()
 except AttributeError:
  return 'Headers unavailable'
 
def compare_site_status(prev_results):
 
 def is_status_changed(url):
  status = get_site_status(url)
  friendly_status = '%s is %s' % (url, status)
  print friendly_status
  if url in prev_results and prev_results[url] != status:
   logging.warning(status)
   email_alert(str(get_headers(url)), friendly_status)
  prev_results[url] = status
 
 return is_status_changed
 
def is_internet_reachable():
 if get_site_status('www.baidu.com') == 'down' and get_site_status('www.sohu.com') == 'down':
  return False
 return True
 
def load_old_results(file_path):
 pickledata = {}
 if os.path.isfile(file_path):
  picklefile = open(file_path, 'rb')
  pickledata = pickle.load(picklefile)
  picklefile.close()
 return pickledata
 
def store_results(file_path, data):
 output = open(file_path, 'wb')
 pickle.dump(data, output)
 output.close()
 
def main(urls):
 logging.basicConfig(level=logging.WARNING, filename='checksites.log', 
   format='%(asctime)s %(levelname)s: %(message)s', 
   datefmt='%Y-%m-%d %H:%M:%S')
 
 pickle_file = 'data.pkl'
 pickledata = load_old_results(pickle_file)
 print pickledata
  
 if is_internet_reachable():
  status_checker = compare_site_status(pickledata)
  map(status_checker, urls)
 else:
  logging.error('Either the world ended or we are not connected to the net.')
  
 store_results(pickle_file, pickledata)
 
if __name__ == '__main__':
 main(sys.argv[1:])

脚本核心点解释:

1、getattr()是python的内置函数,接收一个对象,可以根据对象属性返回对象的值。

2、compare_site_status()函数是返回的是一个内部定义的函数。

3、map() ,需要2个参数,一个是函数,一个是序列,功能就是将序列中的每个元素应用函数方法。

总结

以上就是这篇文章的全部内容,有需要的朋友们可以参考借鉴。

以上是利用python批量检查网站的可用性的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
列表和阵列之间的选择如何影响涉及大型数据集的Python应用程序的整体性能?列表和阵列之间的选择如何影响涉及大型数据集的Python应用程序的整体性能?May 03, 2025 am 12:11 AM

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

说明如何将内存分配给Python中的列表与数组。说明如何将内存分配给Python中的列表与数组。May 03, 2025 am 12:10 AM

Inpython,ListSusedynamicMemoryAllocationWithOver-Asalose,而alenumpyArraySallaySallocateFixedMemory.1)listssallocatemoremoremoremorythanneededinentientary上,respizeTized.2)numpyarsallaysallaysallocateAllocateAllocateAlcocateExactMemoryForements,OfferingPrediCtableSageButlessemageButlesseflextlessibility。

您如何在Python数组中指定元素的数据类型?您如何在Python数组中指定元素的数据类型?May 03, 2025 am 12:06 AM

Inpython,YouCansspecthedatatAtatatPeyFelemereModeRernSpant.1)Usenpynernrump.1)Usenpynyp.dloatp.dloatp.ploatm64,formor professisconsiscontrolatatypes。

什么是Numpy,为什么对于Python中的数值计算很重要?什么是Numpy,为什么对于Python中的数值计算很重要?May 03, 2025 am 12:03 AM

NumPyisessentialfornumericalcomputinginPythonduetoitsspeed,memoryefficiency,andcomprehensivemathematicalfunctions.1)It'sfastbecauseitperformsoperationsinC.2)NumPyarraysaremorememory-efficientthanPythonlists.3)Itoffersawiderangeofmathematicaloperation

讨论'连续内存分配”的概念及其对数组的重要性。讨论'连续内存分配”的概念及其对数组的重要性。May 03, 2025 am 12:01 AM

Contiguousmemoryallocationiscrucialforarraysbecauseitallowsforefficientandfastelementaccess.1)Itenablesconstanttimeaccess,O(1),duetodirectaddresscalculation.2)Itimprovescacheefficiencybyallowingmultipleelementfetchespercacheline.3)Itsimplifiesmemorym

您如何切成python列表?您如何切成python列表?May 02, 2025 am 12:14 AM

SlicingaPythonlistisdoneusingthesyntaxlist[start:stop:step].Here'showitworks:1)Startistheindexofthefirstelementtoinclude.2)Stopistheindexofthefirstelementtoexclude.3)Stepistheincrementbetweenelements.It'susefulforextractingportionsoflistsandcanuseneg

在Numpy阵列上可以执行哪些常见操作?在Numpy阵列上可以执行哪些常见操作?May 02, 2025 am 12:09 AM

numpyallowsforvariousoperationsonArrays:1)basicarithmeticlikeaddition,减法,乘法和division; 2)evationAperationssuchasmatrixmultiplication; 3)element-wiseOperations wiseOperationswithOutexpliitloops; 4)

Python的数据分析中如何使用阵列?Python的数据分析中如何使用阵列?May 02, 2025 am 12:09 AM

Arresinpython,尤其是Throughnumpyandpandas,weessentialFordataAnalysis,offeringSpeedAndeffied.1)NumpyArseNable efflaysenable efficefliceHandlingAtaSetSetSetSetSetSetSetSetSetSetSetsetSetSetSetSetsopplexoperationslikemovingaverages.2)

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。