本篇文章主要介绍了详解python并发获取snmp信息及性能测试,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
python & snmp
用python获取snmp信息有多个现成的库可以使用,其中比较常用的是netsnmp
和pysnmp
两个库。网上有较多的关于两个库的例子。
本文重点在于如何并发的获取snmp的数据,即同时获取多台机器的snmp信息。
netsnmp
先说netsnmp。python的netsnmp,其实是来自于net-snmp包。
python通过一个c文件调用net-snmp的接口获取数据。
因此,在并发获取多台机器的时候,不能够使用协程获取。因为使用协程,在get数据的时候,协程会一直等待net-snmp接口返回数据,而不会像socket使用时那样在等待数据时把CPU切换给其他协程使用。从这点上来说,使用协程和串行获取没有区别。
那么如何解决并发获取的问题呢?可以使用线程,多线程获取(当然也可以使用多进程)。多个线程同时调用net-snmp的接口获取数据,然后cpu在多个线程之间不停切换。当一个线程获取一个结果后,可以继续调用接口获取下一个snmp数据。
这里我写了一个样例程序。首先把所有的host和oid做成任务放到队列里,然后启动多个线程,去执行获取任务。程序样例如下:
import threading import time import netsnmp import Queue start_time = time.time() hosts = ["192.20.150.109", "192.20.150.110", "192.20.150.111", "192.20.150.112", "192.20.150.113", "192.20.150.114", "192.20.150.115", "192.20.150.116", "192.20.150.117", "192.20.150.118", "192.20.150.119", "192.20.150.120", "192.20.150.121", "192.20.80.148", "192.20.80.149", "192.20.96.59", "192.20.82.14", "192.20.82.15", "192.20.82.17", "192.20.82.19", "192.20.82.12", "192.20.80.139", "192.20.80.137", "192.20.80.136", "192.20.80.134", "192.20.80.133", "192.20.80.131", "192.20.80.130", "192.20.81.141", "192.20.81.140", "192.20.82.26", "192.20.82.28", "192.20.82.23", "192.20.82.21", "192.20.80.128", "192.20.80.127", "192.20.80.122", "192.20.81.159", "192.20.80.121", "192.20.80.124", "192.20.81.151", "192.20.80.118", "192.20.80.119", "192.20.80.113", "192.20.80.112", "192.20.80.116", "192.20.80.115", "192.20.78.62", "192.20.81.124", "192.20.81.125", "192.20.81.122", "192.20.81.121", "192.20.82.33", "192.20.82.31", "192.20.82.32", "192.20.82.30", "192.20.81.128", "192.20.82.39", "192.20.82.37", "192.20.82.35", "192.20.81.130", "192.20.80.200", "192.20.81.136", "192.20.81.137", "192.20.81.131", "192.20.81.133", "192.20.81.134", "192.20.82.43", "192.20.82.45", "192.20.82.41", "192.20.79.152", "192.20.79.155", "192.20.79.154", "192.25.76.235", "192.25.76.234", "192.25.76.233", "192.25.76.232", "192.25.76.231", "192.25.76.228", "192.25.20.96", "192.25.20.95", "192.25.20.94", "192.25.20.93", "192.24.163.14", "192.24.163.21", "192.24.163.29", "192.24.163.6", "192.18.136.22", "192.18.136.23", "192.24.193.2", "192.24.193.19", "192.24.193.18", "192.24.193.11", "192.20.157.132", "192.20.157.133", "192.24.212.232", "192.24.212.231", "192.24.212.230"] oids = [".1.3.6.1.4.1.2021.11.9.0",".1.3.6.1.4.1.2021.11.10.0",".1.3.6.1.4.1.2021.11.11.0",".1.3.6.1.4.1.2021.10.1.3.1", ".1.3.6.1.4.1.2021.10.1.3.2",".1.3.6.1.4.1.2021.10.1.3.3",".1.3.6.1.4.1.2021.4.6.0",".1.3.6.1.4.1.2021.4.14.0", ".1.3.6.1.4.1.2021.4.15.0"] myq = Queue.Queue() rq = Queue.Queue() #把host和oid组成任务 for host in hosts: for oid in oids: myq.put((host,oid)) def poll_one_host(): while True: try: #死循环从队列中获取任务,直到队列任务为空 host, oid = myq.get(block=False) session = netsnmp.Session(Version=2, DestHost=host, Community="cluster",Timeout=3000000,Retries=0) var_list = netsnmp.VarList() var_list.append(netsnmp.Varbind(oid)) ret = session.get(var_list) rq.put((host, oid, ret, (time.time() - start_time))) except Queue.Empty: break thread_arr = [] #开启多线程 num_thread = 50 for i in range(num_thread): t = threading.Thread(target=poll_one_host, kwargs={}) t.setDaemon(True) t.start() thread_arr.append(t) #等待任务执行完毕 for i in range(num_thread): thread_arr[i].join() while True: try: info = rq.get(block=False) print info except Queue.Empty: print time.time() - start_time break
netsnmp除了支持get操作之外,还支持walk操作,即遍历某个oid。
但是walk使用的时候需要谨慎,以免导致高延时等问题,具体可以参见之前的一篇snmpwalk高延时问题分析的博客。
pysnmp
pysnmp是用python实现的一套snmp协议的库。其自身提供了对于异步的支持。
import time import Queue from pysnmp.hlapi.asyncore import * t = time.time() myq = Queue.Queue() #回调函数。在有数据返回时触发 def cbFun(snmpEngine, sendRequestHandle, errorIndication, errorStatus, errorIndex, varBinds, cbCtx): myq.put((time.time()-t, varBinds)) hosts = ["192.20.150.109", "192.20.150.110", "192.20.150.111", "192.20.150.112", "192.20.150.113", "192.20.150.114", "192.20.150.115", "192.20.150.116", "192.20.150.117", "192.20.150.118", "192.20.150.119", "192.20.150.120", "192.20.150.121", "192.20.80.148", "192.20.80.149", "192.20.96.59", "192.20.82.14", "192.20.82.15", "192.20.82.17", "192.20.82.19", "192.20.82.12", "192.20.80.139", "192.20.80.137", "192.20.80.136", "192.20.80.134", "192.20.80.133", "192.20.80.131", "192.20.80.130", "192.20.81.141", "192.20.81.140", "192.20.82.26", "192.20.82.28", "192.20.82.23", "192.20.82.21", "192.20.80.128", "192.20.80.127", "192.20.80.122", "192.20.81.159", "192.20.80.121", "192.20.80.124", "192.20.81.151", "192.20.80.118", "192.20.80.119", "192.20.80.113", "192.20.80.112", "192.20.80.116", "192.20.80.115", "192.20.78.62", "192.20.81.124", "192.20.81.125", "192.20.81.122", "192.20.81.121", "192.20.82.33", "192.20.82.31", "192.20.82.32", "192.20.82.30", "192.20.81.128", "192.20.82.39", "192.20.82.37", "192.20.82.35", "192.20.81.130", "192.20.80.200", "192.20.81.136", "192.20.81.137", "192.20.81.131", "192.20.81.133", "192.20.81.134", "192.20.82.43", "192.20.82.45", "192.20.82.41", "192.20.79.152", "192.20.79.155", "192.20.79.154", "192.25.76.235", "192.25.76.234", "192.25.76.233", "192.25.76.232", "192.25.76.231", "192.25.76.228", "192.25.20.96", "192.25.20.95", "192.25.20.94", "192.25.20.93", "192.24.163.14", "192.24.163.21", "192.24.163.29", "192.24.163.6", "192.18.136.22", "192.18.136.23", "192.24.193.2", "192.24.193.19", "192.24.193.18", "192.24.193.11", "192.20.157.132", "192.20.157.133", "192.24.212.232", "192.24.212.231", "192.24.212.230"] oids = [".1.3.6.1.4.1.2021.11.9.0",".1.3.6.1.4.1.2021.11.10.0",".1.3.6.1.4.1.2021.11.11.0",".1.3.6.1.4.1.2021.10.1.3.1", ".1.3.6.1.4.1.2021.10.1.3.2",".1.3.6.1.4.1.2021.10.1.3.3",".1.3.6.1.4.1.2021.4.6.0",".1.3.6.1.4.1.2021.4.14.0", ".1.3.6.1.4.1.2021.4.15.0"] snmpEngine = SnmpEngine() #添加任务 for oid in oids: for h in hosts: getCmd(snmpEngine, CommunityData('cluster'), UdpTransportTarget((h, 161), timeout=3, retries=0,), ContextData(), ObjectType(ObjectIdentity(oid)), cbFun=cbFun) time1 = time.time() - t #执行异步获取snmp snmpEngine.transportDispatcher.runDispatcher() #打印结果 while True: try: info = myq.get(block=False) print info except Queue.Empty: print time1 print time.time() - t break
pysnmp本身只支持最基础的get和getnext命令,因此如果想使用walk,需要自己进行实现。
性能测试
在同一个环境下,对两者进行了性能测试。两者对198个host,10个oid进行采集。
测试组 | 耗时(sec) |
---|---|
netsnmp(20线程) | 6.252 |
netsnmp(50线程) | 3.269 |
netsnmp(200线程) | 3.265 |
pysnmp | 4.812 |
可以看到netsnmp的采集速度跟线程数有关。当线程数增大到一定程度,采集时间不再缩短。因为开辟线程同样会消耗时间。而已有的线程已经足够处理。
pysnmp性能较之略差一下。详细分析pysnmp在添加任务(执行getCmd时)消耗了约1.2s,之后的采集约消耗3.3秒。
在增加了oid数,在进行实验。host仍然是198个,oid是42个。
测试组 | 耗时(sec) |
---|---|
netsnmp(20线程) | 30.935 |
netsnmp(50线程) | 12.914 |
netsnmp(200线程) | 4.044 |
pysnmp | 11.043 |
可以看到差距被进一步拉大。在线程足够多的情况下,netsnmp的效率要明显强于pysnmp。
因为二者都支持可以并行采集多个host,从易用性来说,netsnmp更为简单一些,且netsnmp支持walk功能。本文更加推荐netsnmp。
安装netsnmp需要安装net-snmp。如果centos,则使用yum会较为方便。
以上是详解python并发获取snmp信息及性能测试方法的详细内容。更多信息请关注PHP中文网其他相关文章!

Tomergelistsinpython,YouCanusethe操作员,estextMethod,ListComprehension,Oritertools

在Python3中,可以通过多种方法连接两个列表:1)使用 运算符,适用于小列表,但对大列表效率低;2)使用extend方法,适用于大列表,内存效率高,但会修改原列表;3)使用*运算符,适用于合并多个列表,不修改原列表;4)使用itertools.chain,适用于大数据集,内存效率高。

使用join()方法是Python中从列表连接字符串最有效的方法。1)使用join()方法高效且易读。2)循环使用 运算符对大列表效率低。3)列表推导式与join()结合适用于需要转换的场景。4)reduce()方法适用于其他类型归约,但对字符串连接效率低。完整句子结束。

pythonexecutionistheprocessoftransformingpypythoncodeintoExecutablestructions.1)InternterPreterReadSthecode,ConvertingTingitIntObyTecode,whepythonvirtualmachine(pvm)theglobalinterpreterpreterpreterpreterlock(gil)the thepythonvirtualmachine(pvm)

Python的关键特性包括:1.语法简洁易懂,适合初学者;2.动态类型系统,提高开发速度;3.丰富的标准库,支持多种任务;4.强大的社区和生态系统,提供广泛支持;5.解释性,适合脚本和快速原型开发;6.多范式支持,适用于各种编程风格。

Python是解释型语言,但也包含编译过程。1)Python代码先编译成字节码。2)字节码由Python虚拟机解释执行。3)这种混合机制使Python既灵活又高效,但执行速度不如完全编译型语言。

useeAforloopWheniteratingOveraseQuenceOrforAspecificnumberoftimes; useAwhiLeLoopWhenconTinuingUntilAcIntiment.ForloopSareIdeAlforkNownsences,而WhileLeleLeleLeleLoopSituationSituationSituationsItuationSuationSituationswithUndEtermentersitations。

pythonloopscanleadtoerrorslikeinfiniteloops,modifyingListsDuringteritation,逐个偏置,零indexingissues,andnestedloopineflinefficiencies


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

Dreamweaver Mac版
视觉化网页开发工具

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能