在上文的优化中,对每500个用户,会进行一些计算并记录结果在磁盘文件中。原本以为这么做,这些结果就在磁盘文件中了,而不会再继续占用内存;但实际上,Python的大坑就是Python不会自动清理这些内存。这是由其本身实现决定的。具体原因网上多有文章介绍,这里就不copy了。
本篇将贴一个笔者的实验脚本,用以说明Python确实存在这么一个不释放内存的现象,另外也提出一个解决方案,即:先del,再显式调用gc.collect(). 脚本和具体效果见下。
实验环境一:Win 7, Python 2.7
from time import sleep, time import gc def mem(way=1): print time() for i in range(10000000): if way == 1: pass else: # way 2, 3 del i print time() if way == 1 or way == 2: pass else: # way 3 gc.collect() print time() if __name__ == "__main__": print "Test way 1: just pass" mem(way=1) sleep(20) print "Test way 2: just del" mem(way=2) sleep(20) print "Test way 3: del, and then gc.collect()" mem(way=3) sleep(20)
运行结果如下:
Test way 1: just pass 1426688589.47 1426688590.25 1426688590.25 Test way 2: just del 1426688610.25 1426688611.05 1426688611.05 Test way 3: del, and then gc.collect() 1426688631.05 1426688631.85 1426688631.95
对于way 1和way 2,结果是完全一样的,程序内存消耗峰值是326772KB,在sleep 20秒时,内存实时消耗是244820KB;
对于way 3,程序内存消耗峰值同上,但是sleep时内存实时消耗就只有6336KB了。
实验环境二: Ubuntu 14.10, Python 2.7.3
运行结果:
Test way 1: just pass 1426689577.46 1426689579.41 1426689579.41 Test way 2: just del 1426689599.43 1426689601.1 1426689601.1 Test way 3: del, and then gc.collect() 1426689621.12 1426689622.8 1426689623.11
ubuntu@my_machine:~$ ps -aux | grep test_mem Warning: bad ps syntax, perhaps a bogus '-'? See http://procps.sf.net/faq.html ubuntu 9122 10.0 6.0 270916 245564 pts/1 S+ 14:39 0:03 python test_mem.py ubuntu 9134 0.0 0.0 8104 924 pts/2 S+ 14:40 0:00 grep --color=auto test_mem ubuntu@my_machine:~$ ps -aux | grep test_mem Warning: bad ps syntax, perhaps a bogus '-'? See http://procps.sf.net/faq.html ubuntu 9122 10.0 6.0 270916 245564 pts/1 S+ 14:39 0:03 python test_mem.py ubuntu 9134 0.0 0.0 8104 924 pts/2 S+ 14:40 0:00 grep --color=auto test_mem ubuntu@my_machine:~$ ps -aux | grep test_mem Warning: bad ps syntax, perhaps a bogus '-'? See http://procps.sf.net/faq.html ubuntu 9122 11.6 0.1 30956 5608 pts/1 S+ 14:39 0:05 python test_mem.py
结论:
以上说明,当调用del时,其实Python并不会真正release内存,而是将其继续放在其内存池中;只有在显式调用gc.collect()时,才会真正release内存。
进一步:
其实回到上一篇博客的脚本中,也让其引入gc.collect(),然后写个监控脚本监测内存消耗情况:
while ((1)); do ps -aux | sort -n -k5,6 | grep my_script; free; sleep 5; done
结果发现:内存并不会在每500个用户一组执行完后恢复,而是一直持续消耗到仅存约70MB时,gc才好像起作用。本环境中,机器使用的是Cloud instance,总内存2G,可用内存约为1G,本脚本内存常用消耗是900M - 1G。换句话说,对于这个脚本来说,gc并没有立即起作用,而是在系统可用内存从1 - 1.2G下降到只剩70M左右时,gc才开始发挥作用。这点确实比较奇怪,不知道和该脚本是在Thread中使用的gc.collect()是否有关,或者是gc发挥作用原本就不是可控的。笔者尚未做相关实验,可能在下篇博客中继续探讨。
但是,可以肯定的是,若不使用gc.collect(), 原脚本将会将系统内存耗尽而被杀死。这一点从syslog中可以明显看出。
以上是手动释放Python的内存的方法的详细内容。更多信息请关注PHP中文网其他相关文章!

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

禅工作室 13.0.1
功能强大的PHP集成开发环境

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),