首页 >后端开发 >Python教程 >用python抓取求职网站信息

用python抓取求职网站信息

高洛峰
高洛峰原创
2017-03-19 14:05:292127浏览

这篇文章介绍用python抓取求职网站信息

本次抓取的是智联招聘网站搜索“数据分析师”之后的信息。

python版本: python3.5。

我用的主要package是 Beautifulsoup + Requests+csv

 另外,我将招聘内容的简单描述也抓取下来了。

 

文件输出到csv文件后,发现用excel打开时有些乱码,但用文件软件打开(如notepad++)是没有问题的。

为了能用Excel打开时正确显示,我用pandas转换了以下,并添加上列名。转化完后,就可以正确显示了。关于用pandas转化,可以参考我的博客:

由于招聘内容的描述较多,最后将csv文件另存为excel文件,并调整下格式,以便于查看。

 

最后效果如下: 用python抓取求职网站信息

 

实现代码如下:信息爬取的代码如下:

# Code based on Python 3.x
# _*_ coding: utf-8 _*_
# __Author: "LEMON"


from bs4 import BeautifulSoup
import requests
import csv


def download(url):
    headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:51.0) Gecko/20100101 Firefox/51.0'}
    req = requests.get(url, headers=headers)
    return req.text


def get_content(html):
    soup = BeautifulSoup(html, 'lxml')
    body = soup.body
    data_main = body.find('div', {'class': 'newlist_list_content'})
    tables = data_main.find_all('table')

    zw_list = []
    for i,table in enumerate(tables):
        if i == 0:
            continue
        temp = []
        tds = table.find('tr').find_all('td')
        zwmc = tds[0].find('a').get_text()
        zw_link = tds[0].find('a').get('href')
        fkl = tds[1].find('span').get_text()
        gsmc = tds[2].find('a').get_text()
        zwyx = tds[3].get_text()
        gzdd = tds[4].get_text()
        gbsj = tds[5].find('span').get_text()

        tr_brief = table.find('tr', {'class': 'newlist_tr_detail'})
        brief = tr_brief.find('li', {'class': 'newlist_deatil_last'}).get_text()

        temp.append(zwmc)
        temp.append(fkl)
        temp.append(gsmc)
        temp.append(zwyx)
        temp.append(gzdd)
        temp.append(gbsj)
        temp.append(brief)
        temp.append(zw_link)

        zw_list.append(temp)
    return zw_list


def write_data(data, name):
    filename = name
    with open(filename, 'a', newline='', encoding='utf-8') as f:
        f_csv = csv.writer(f)
        f_csv.writerows(data)

if __name__ == '__main__':

    basic_url = 'http://sou.zhaopin.com/jobs/searchresult.ashx?jl=%E5%85%A8%E5%9B%BD&kw=%E6%95%B0%E6%8D%AE%E5%88%86%E6%9E%90%E5%B8%88&sm=0&p='

    number_list = list(range(90)) # total number of page is 90
    for number in number_list:
        num = number + 1
        url = basic_url + str(num)
        filename = 'zhilian_DA.csv'
        html = download(url)
        # print(html)
        data = get_content(html)
        # print(data)
        print('start saving page:', num)
        write_data(data, filename)

用pandas转化的代码如下:

# Code based on Python 3.x
# _*_ coding: utf-8 _*_
# __Author: "LEMON"

import pandas as pd

df = pd.read_csv('zhilian_DA.csv', header=None)


df.columns = ['职位名称', '反馈率', '公司名称', '月薪', '工作地点',
           '发布日期', '招聘简介', '网页链接']

# 将调整后的dataframe文件输出到新的csv文件
df.to_csv('zhilian_DA_update.csv', index=False)


以上是用python抓取求职网站信息的详细内容。更多信息请关注PHP中文网其他相关文章!

声明:
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn