搜索
首页Javajava教程Java集合之Vector具体代码分析(图)

Vector是矢量队列,它继承了AbstractList,实现了List、 RandomAccess, Cloneable, java.io.Serializable接口

Vector接口依赖图:


Vector继承了AbstractList,实现了List,它是一个队列,因此实现了相应的添加、删除、修改、遍历等功能。

Vector实现了RandomAccess接口,因此可以随机访问。

Vector实现了Cloneable,重载了clone()方法,因此可以进行克隆。

Vector实现了Serializable接口,因此可以进行序列化。

Vector的操作是线程安全的。

Vector的数据结构和ArrayList差不多,包含了3个成员变量:elementData,elementCount,capacityIncrement。

(1)elementData是Object[]的数组,初始大小为10,会不断的增长。

(2)elementCount是元素的个数。

(3)capacityIncrement是动态数组增长的系数。

Vector有四种遍历方式:

(1)第一种通过迭代器遍历,即通过Iterator去遍历                

Integer value=Iterator iter=vector.iterator()(iter.hasNext())
{
    value=(Interger)iter.next()}


(2)第二种随机访问,通过索引进行遍历

Integer value=size=vector.size()(i=i<i++)
{
value=vector.get(i)}


(3)第三种通过for循环的方式

Integer value=( Integer intevector)
{
value=inte}


(4)第四种,Enumeration遍历  

Integer value=Enumeration enu=vector.elements()(enu.hasMoreElements())
{
value=(Integer)enu.nextElement()}


Vector示例代码:


Hello {

(String[] args) {
        Vector vec = Vector()vec.add()vec.add()vec.add()vec.add()vec.add()vec.set()vec.add()System..println(+vec)System..println(+vec.indexOf())System..println(+vec.lastIndexOf())System..println(+vec.firstElement())System..println(+vec.elementAt())System..println(+vec.lastElement())System..println(+vec.size())System..println(+vec.capacity())System..println(+vec.subList())Enumeration enu = vec.elements()(enu.hasMoreElements())
        {
            System..println(+enu.nextElement())            Vector retainVec = Vector()            retainVec.add()            retainVec.add()            System..println(+vec.retainAll(retainVec))            System..println(+vec)            String[] arr = (String[]) vec.toArray(String[])(String str:arr)
                System..println(+str)            vec.clear()            vec.removeAllElements()            System..println(+vec.isEmpty())        }
    }
}


Vector源代码:

public class Vector<E> extends AbstractList<E>
        implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
    protected Object[] elementData;//对象数组,来存放数据
    protected int elementCount; //当前的数据数目
    protected int capacityIncrement; //容量增长
    private static final long serialVersionUID = -2767605614048989439L; //序列号
    //构造函数矢量队列初始化大小和增长大小
    public Vector(int initialCapacity, int capacityIncrement) {
        super();
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Capacity: "+
                    initialCapacity);
        this.elementData = new Object[initialCapacity];
        this.capacityIncrement = capacityIncrement;
    }
    //构造函数初始化大小
    public Vector(int initialCapacity) {
        this(initialCapacity, 0);
    }
    //构造函数默认初始化大小10
    public Vector() {
        this(10);
    }
    //带有集合参数的构造函数
    public Vector(Collection<? extends E> c) {
        elementData = c.toArray();
        elementCount = elementData.length;
// c.toArray might (incorrectly) not return Object[] (see 6260652)
        if (elementData.getClass() != Object[].class)
            elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
    }
    //线程安全的对象数组拷贝
    public synchronized void copyInto(Object[] anArray) {
        System.arraycopy(elementData, 0, anArray, 0, elementCount);
    }
    //调整容量大小适合当前矢量队列的大小
    public synchronized void trimToSize() {
        modCount++;
        int oldCapacity = elementData.length;
        if (elementCount < oldCapacity) {
            elementData = Arrays.copyOf(elementData, elementCount);
        }
    }
    //增加矢量队列的容量大小
    public synchronized void ensureCapacity(int minCapacity) {
        if (minCapacity > 0) {
            modCount++;
            ensureCapacityHelper(minCapacity);
        }
    }
    private void ensureCapacityHelper(int minCapacity) {
// overflow-conscious code
        if (minCapacity - elementData.length > 0)
            grow(minCapacity);
    }
    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
    private void grow(int minCapacity) {
// overflow-conscious code
        int oldCapacity = elementData.length;
        int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
                capacityIncrement : oldCapacity);
        if (newCapacity - minCapacity < 0)
            newCapacity = minCapacity;
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        elementData = Arrays.copyOf(elementData, newCapacity);
    }

    private static int hugeCapacity(int minCapacity) {
        if (minCapacity < 0) // overflow
            throw new OutOfMemoryError();
        return (minCapacity > MAX_ARRAY_SIZE) ?
                Integer.MAX_VALUE :
                MAX_ARRAY_SIZE;
    }
    //调整大小,如果超出了就删掉多余的对象
    public synchronized void setSize(int newSize) {
        modCount++;
        if (newSize > elementCount) {
            ensureCapacityHelper(newSize);
        } else {
            for (int i = newSize ; i < elementCount ; i++) {
                elementData[i] = null;
            }
        }
        elementCount = newSize;
    }
    //矢量对象的容量
    public synchronized int capacity() {
        return elementData.length;
    }
    //矢量队列的大小
    public synchronized int size() {
        return elementCount;
    }
    //是否为空
    public synchronized boolean isEmpty() {
        return elementCount == 0;
    }
    //生成Enumeration对象,进行遍历
    public Enumeration<E> elements() {
        return new Enumeration<E>() {
            int count = 0;

            public boolean hasMoreElements() {
                return count < elementCount;
            }

            public E nextElement() {
                synchronized (Vector.this) {
                    if (count < elementCount) {
                        return elementData(count++);
                    }
                }
                throw new NoSuchElementException("Vector Enumeration");
            }
        };
    }
    //判断是否包含某个对象
    public boolean contains(Object o) {
        return indexOf(o, 0) >= 0;
    }
    //返回某个对象的下标
    public int indexOf(Object o) {
        return indexOf(o, 0);
    }
    public synchronized int indexOf(Object o, int index) {
        if (o == null) {
            for (int i = index ; i < elementCount ; i++)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = index ; i < elementCount ; i++)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }
    //最后出现的对象的坐标
    public synchronized int lastIndexOf(Object o) {
        return lastIndexOf(o, elementCount-1);
    }
    public synchronized int lastIndexOf(Object o, int index) {
        if (index >= elementCount)
            throw new IndexOutOfBoundsException(index + " >= "+ elementCount);

        if (o == null) {
            for (int i = index; i >= 0; i--)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = index; i >= 0; i--)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }
    //返回某个坐标的节点
    public synchronized E elementAt(int index) {
        if (index >= elementCount) {
            throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
        }

        return elementData(index);
    }
    //第一个元素
    public synchronized E firstElement() {
        if (elementCount == 0) {
            throw new NoSuchElementException();
        }
        return elementData(0);
    }
    //最后一个元素
    public synchronized E lastElement() {
        if (elementCount == 0) {
            throw new NoSuchElementException();
        }
        return elementData(elementCount - 1);
    }
    //对下标为index的元素替换为obj
    public synchronized void setElementAt(E obj, int index) {
        if (index >= elementCount) {
            throw new ArrayIndexOutOfBoundsException(index + " >= " +
                    elementCount);
        }
        elementData[index] = obj;
    }
    //删除某个下标的元素
    public synchronized void removeElementAt(int index) {
        modCount++;
        if (index >= elementCount) {
            throw new ArrayIndexOutOfBoundsException(index + " >= " +
                    elementCount);
        }
        else if (index < 0) {
            throw new ArrayIndexOutOfBoundsException(index);
        }
        int j = elementCount - index - 1;
        if (j > 0) {
            System.arraycopy(elementData, index + 1, elementData, index, j);
        }
        elementCount--;
        elementData[elementCount] = null; /* to let gc do its work */
    }
    //在index坐标后添加obj
    public synchronized void insertElementAt(E obj, int index) {
        modCount++;
        if (index > elementCount) {
            throw new ArrayIndexOutOfBoundsException(index
                    + " > " + elementCount);
        }
        ensureCapacityHelper(elementCount + 1);
        System.arraycopy(elementData, index, elementData, index + 1, elementCount - index);
        elementData[index] = obj;
        elementCount++;
    }
    //矢量队列末尾添加元素
    public synchronized void addElement(E obj) {
        modCount++;
        ensureCapacityHelper(elementCount + 1);
        elementData[elementCount++] = obj;
    }
    //删除obj元素
    public synchronized boolean removeElement(Object obj) {
        modCount++;
        int i = indexOf(obj);
        if (i >= 0) {
            removeElementAt(i);
            return true;
        }
        return false;
    }
    //清空所有元素
    public synchronized void removeAllElements() {
        modCount++;
// Let gc do its work
        for (int i = 0; i < elementCount; i++)
            elementData[i] = null;

        elementCount = 0;
    }
    //克隆
    public synchronized Object clone() {
        try {
            @SuppressWarnings("unchecked")
            Vector<E> v = (Vector<E>) super.clone();
            v.elementData = Arrays.copyOf(elementData, elementCount);
            v.modCount = 0;
            return v;
        } catch (CloneNotSupportedException e) {
// this shouldn&#39;t happen, since we are Cloneable
            throw new InternalError(e);
        }
    }
    //生成数组
    public synchronized Object[] toArray() {
        return Arrays.copyOf(elementData, elementCount);
    }
    @SuppressWarnings("unchecked")
    public synchronized <T> T[] toArray(T[] a) {
        if (a.length < elementCount)
            return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());

        System.arraycopy(elementData, 0, a, 0, elementCount);

        if (a.length > elementCount)
            a[elementCount] = null;

        return a;
    }
    @SuppressWarnings("unchecked")
    E elementData(int index) {
        return (E) elementData[index];
    }
    //得到index的元素
    public synchronized E get(int index) {
        if (index >= elementCount)
            throw new ArrayIndexOutOfBoundsException(index);

        return elementData(index);
    }
    //将index元素替换成element
    public synchronized E set(int index, E element) {
        if (index >= elementCount)
            throw new ArrayIndexOutOfBoundsException(index);

        E oldValue = elementData(index);
        elementData[index] = element;
        return oldValue;
    }
    //矢量队列队尾添加元素
    public synchronized boolean add(E e) {
        modCount++;
        ensureCapacityHelper(elementCount + 1);
        elementData[elementCount++] = e;
        return true;
    }
    //删除对象
    public boolean remove(Object o) {
        return removeElement(o);
    }
    //在index处添加元素
    public void add(int index, E element) {
        insertElementAt(element, index);
    }
    //删除index处元素
    public synchronized E remove(int index) {
        modCount++;
        if (index >= elementCount)
            throw new ArrayIndexOutOfBoundsException(index);
        E oldValue = elementData(index);

        int numMoved = elementCount - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                    numMoved);
        elementData[--elementCount] = null; // Let gc do its work

        return oldValue;
    }
    //清空元素
    public void clear() {
        removeAllElements();
    }
    //判断Vector中是否含有所有的Collection
    public synchronized boolean containsAll(Collection<?> c) {
        return super.containsAll(c);
    }
    //将Collection添加到矢量队列的队尾
    public synchronized boolean addAll(Collection<? extends E> c) {
        modCount++;
        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityHelper(elementCount + numNew);
        System.arraycopy(a, 0, elementData, elementCount, numNew);
        elementCount += numNew;
        return numNew != 0;
    }
    //删除包含Collection的元素
    public synchronized boolean removeAll(Collection<?> c) {
        return super.removeAll(c);
    }
    //删除不存在Collection的元素
    public synchronized boolean retainAll(Collection<?> c) {
        return super.retainAll(c);
    }
    //在某个index之后追加集合
    public synchronized boolean addAll(int index, Collection<? extends E> c) {
        modCount++;
        if (index < 0 || index > elementCount)
            throw new ArrayIndexOutOfBoundsException(index);

        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityHelper(elementCount + numNew);

        int numMoved = elementCount - index;
        if (numMoved > 0)
            System.arraycopy(elementData, index, elementData, index + numNew,
                    numMoved);

        System.arraycopy(a, 0, elementData, index, numNew);
        elementCount += numNew;
        return numNew != 0;
    }
    //判断矢量队列是否相同
    public synchronized boolean equals(Object o) {
        return super.equals(o);
    }
    //返回hashCode
    public synchronized int hashCode() {
        return super.hashCode();
    }
    //
    public synchronized String toString() {
        return super.toString();
    }
    //切断
    public synchronized List<E> subList(int fromIndex, int toIndex) {
        return Collections.synchronizedList(super.subList(fromIndex, toIndex),
                this);
    }
    //删除范围
    protected synchronized void removeRange(int fromIndex, int toIndex) {
        modCount++;
        int numMoved = elementCount - toIndex;
        System.arraycopy(elementData, toIndex, elementData, fromIndex,
                numMoved);

// Let gc do its work
        int newElementCount = elementCount - (toIndex-fromIndex);
        while (elementCount != newElementCount)
            elementData[--elementCount] = null;
    }
    //序列化
    private void writeObject(java.io.ObjectOutputStream s)
            throws java.io.IOException {
        final java.io.ObjectOutputStream.PutField fields = s.putFields();
        final Object[] data;
        synchronized (this) {
            fields.put("capacityIncrement", capacityIncrement);
            fields.put("elementCount", elementCount);
            data = elementData.clone();
        }
        fields.put("elementData", data);
        s.writeFields();
    }
    //迭代
    public synchronized ListIterator<E> listIterator(int index) {
        if (index < 0 || index > elementCount)
            throw new IndexOutOfBoundsException("Index: "+index);
        return new ListItr(index);
    }
    public synchronized ListIterator<E> listIterator() {
        return new ListItr(0);
    }
    public synchronized Iterator<E> iterator() {
        return new Itr();
    }
    private class Itr implements Iterator<E> {
        int cursor;       // index of next element to return
        int lastRet = -1; // index of last element returned; -1 if no such
        int expectedModCount = modCount;

        public boolean hasNext() {
// Racy but within spec, since modifications are checked
            // within or after synchronization in next/previous
            return cursor != elementCount;
        }

        public E next() {
            synchronized (Vector.this) {
                checkForComodification();
                int i = cursor;
                if (i >= elementCount)
                    throw new NoSuchElementException();
                cursor = i + 1;
                return elementData(lastRet = i);
            }
        }

        public void remove() {
            if (lastRet == -1)
                throw new IllegalStateException();
            synchronized (Vector.this) {
                checkForComodification();
                Vector.this.remove(lastRet);
                expectedModCount = modCount;
            }
            cursor = lastRet;
            lastRet = -1;
        }

        @Override
        public void forEachRemaining(Consumer<? super E> action) {
            Objects.requireNonNull(action);
            synchronized (Vector.this) {
                final int size = elementCount;
                int i = cursor;
                if (i >= size) {
                    return;
                }
                @SuppressWarnings("unchecked")
                final E[] elementData = (E[]) Vector.this.elementData;
                if (i >= elementData.length) {
                    throw new ConcurrentModificationException();
                }
                while (i != size && modCount == expectedModCount) {
                    action.accept(elementData[i++]);
                }
// update once at end of iteration to reduce heap write traffic
                cursor = i;
                lastRet = i - 1;
                checkForComodification();
            }
        }

        final void checkForComodification() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }
    }
    final class ListItr extends Itr implements ListIterator<E> {
        ListItr(int index) {
            super();
            cursor = index;
        }

        public boolean hasPrevious() {
            return cursor != 0;
        }

        public int nextIndex() {
            return cursor;
        }

        public int previousIndex() {
            return cursor - 1;
        }

        public E previous() {
            synchronized (Vector.this) {
                checkForComodification();
                int i = cursor - 1;
                if (i < 0)
                    throw new NoSuchElementException();
                cursor = i;
                return elementData(lastRet = i);
            }
        }

        public void set(E e) {
            if (lastRet == -1)
                throw new IllegalStateException();
            synchronized (Vector.this) {
                checkForComodification();
                Vector.this.set(lastRet, e);
            }
        }

        public void add(E e) {
            int i = cursor;
            synchronized (Vector.this) {
                checkForComodification();
                Vector.this.add(i, e);
                expectedModCount = modCount;
            }
            cursor = i + 1;
            lastRet = -1;
        }
    }

    @Override
    public synchronized void forEach(Consumer<? super E> action) {
        Objects.requireNonNull(action);
        final int expectedModCount = modCount;
        @SuppressWarnings("unchecked")
        final E[] elementData = (E[]) this.elementData;
        final int elementCount = this.elementCount;
        for (int i=0; modCount == expectedModCount && i < elementCount; i++) {
            action.accept(elementData[i]);
        }
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
    }

    @Override
    @SuppressWarnings("unchecked")
    public synchronized boolean removeIf(Predicate<? super E> filter) {
        Objects.requireNonNull(filter);
// figure out which elements are to be removed
        // any exception thrown from the filter predicate at this stage
        // will leave the collection unmodified
        int removeCount = 0;
        final int size = elementCount;
        final BitSet removeSet = new BitSet(size);
        final int expectedModCount = modCount;
        for (int i=0; modCount == expectedModCount && i < size; i++) {
            @SuppressWarnings("unchecked")
            final E element = (E) elementData[i];
            if (filter.test(element)) {
                removeSet.set(i);
                removeCount++;
            }
        }
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }

// shift surviving elements left over the spaces left by removed elements
        final boolean anyToRemove = removeCount > 0;
        if (anyToRemove) {
            final int newSize = size - removeCount;
            for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
                i = removeSet.nextClearBit(i);
                elementData[j] = elementData[i];
            }
            for (int k=newSize; k < size; k++) {
                elementData[k] = null;  // Let gc do its work
            }
            elementCount = newSize;
            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
            modCount++;
        }

        return anyToRemove;
    }

    @Override
    @SuppressWarnings("unchecked")
    public synchronized void replaceAll(UnaryOperator<E> operator) {
        Objects.requireNonNull(operator);
        final int expectedModCount = modCount;
        final int size = elementCount;
        for (int i=0; modCount == expectedModCount && i < size; i++) {
            elementData[i] = operator.apply((E) elementData[i]);
        }
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
        modCount++;
    }

    @SuppressWarnings("unchecked")
    @Override
    public synchronized void sort(Comparator<? super E> c) {
        final int expectedModCount = modCount;
        Arrays.sort((E[]) elementData, 0, elementCount, c);
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
        modCount++;
    }
    @Override
    public Spliterator<E> spliterator() {
        return new VectorSpliterator<>(this, null, 0, -1, 0);
    }

    /** Similar to ArrayList Spliterator */
    static final class VectorSpliterator<E> implements Spliterator<E> {
        private final Vector<E> list;
        private Object[] array;
        private int index; // current index, modified on advance/split
        private int fence; // -1 until used; then one past last index
        private int expectedModCount; // initialized when fence set

        /** Create new spliterator covering the given  range */
        VectorSpliterator(Vector<E> list, Object[] array, int origin, int fence,
                          int expectedModCount) {
            this.list = list;
            this.array = array;
            this.index = origin;
            this.fence = fence;
            this.expectedModCount = expectedModCount;
        }

        private int getFence() { // initialize on first use
            int hi;
            if ((hi = fence) < 0) {
                synchronized(list) {
                    array = list.elementData;
                    expectedModCount = list.modCount;
                    hi = fence = list.elementCount;
                }
            }
            return hi;
        }

        public Spliterator<E> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid) ? null :
                    new VectorSpliterator<E>(list, array, lo, index = mid,
                            expectedModCount);
        }

        @SuppressWarnings("unchecked")
        public boolean tryAdvance(Consumer<? super E> action) {
            int i;
            if (action == null)
                throw new NullPointerException();
            if (getFence() > (i = index)) {
                index = i + 1;
                action.accept((E)array[i]);
                if (list.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                return true;
            }
            return false;
        }

        @SuppressWarnings("unchecked")
        public void forEachRemaining(Consumer<? super E> action) {
            int i, hi; // hoist accesses and checks from loop
            Vector<E> lst; Object[] a;
            if (action == null)
                throw new NullPointerException();
            if ((lst = list) != null) {
                if ((hi = fence) < 0) {
                    synchronized(lst) {
                        expectedModCount = lst.modCount;
                        a = array = lst.elementData;
                        hi = fence = lst.elementCount;
                    }
                }
                else
                    a = array;
                if (a != null && (i = index) >= 0 && (index = hi) <= a.length) {
                    while (i < hi)
                        action.accept((E) a[i++]);
                    if (lst.modCount == expectedModCount)
                        return;
                }
            }
            throw new ConcurrentModificationException();
        }

        public long estimateSize() {
            return (long) (getFence() - index);
        }

        public int characteristics() {
            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
        }
    }
}

以上是Java集合之Vector具体代码分析(图)的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
平台独立性如何使企业级的Java应用程序受益?平台独立性如何使企业级的Java应用程序受益?May 03, 2025 am 12:23 AM

Java在企业级应用中被广泛使用是因为其平台独立性。1)平台独立性通过Java虚拟机(JVM)实现,使代码可在任何支持Java的平台上运行。2)它简化了跨平台部署和开发流程,提供了更大的灵活性和扩展性。3)然而,需注意性能差异和第三方库兼容性,并采用最佳实践如使用纯Java代码和跨平台测试。

考虑到平台独立性,Java在物联网(物联网)设备的开发中扮演什么角色?考虑到平台独立性,Java在物联网(物联网)设备的开发中扮演什么角色?May 03, 2025 am 12:22 AM

JavaplaysigantroleiniotduetoitsplatFormentence.1)itallowscodeTobewrittenOnCeandrunonVariousDevices.2)Java'secosystemprovidesuseusefidesusefidesulylibrariesforiot.3)

描述一个方案,您在Java中遇到了一个特定于平台的问题以及如何解决。描述一个方案,您在Java中遇到了一个特定于平台的问题以及如何解决。May 03, 2025 am 12:21 AM

ThesolutiontohandlefilepathsacrossWindowsandLinuxinJavaistousePaths.get()fromthejava.nio.filepackage.1)UsePaths.get()withSystem.getProperty("user.dir")andtherelativepathtoconstructthefilepath.2)ConverttheresultingPathobjecttoaFileobjectifne

Java平台独立对开发人员有什么好处?Java平台独立对开发人员有什么好处?May 03, 2025 am 12:15 AM

Java'splatFormIndenceistificantBecapeitAllowSitallowsDevelostWriTecoDeonCeandRunitonAnyPlatFormwithAjvm.this“ writeonce,runanywhere”(era)橱柜橱柜:1)交叉plat formcomplibility cross-platformcombiblesible,enablingDeploymentMentMentMentMentAcrAptAprospOspOspOssCrossDifferentoSswithOssuse; 2)

将Java用于需要在不同服务器上运行的Web应用程序的优点是什么?将Java用于需要在不同服务器上运行的Web应用程序的优点是什么?May 03, 2025 am 12:13 AM

Java适合开发跨服务器web应用。1)Java的“一次编写,到处运行”哲学使其代码可在任何支持JVM的平台上运行。2)Java拥有丰富的生态系统,包括Spring和Hibernate等工具,简化开发过程。3)Java在性能和安全性方面表现出色,提供高效的内存管理和强大的安全保障。

JVM如何促进Java的'写作一次,在任何地方运行”(WORA)功能?JVM如何促进Java的'写作一次,在任何地方运行”(WORA)功能?May 02, 2025 am 12:25 AM

JVM通过字节码解释、平台无关的API和动态类加载实现Java的WORA特性:1.字节码被解释为机器码,确保跨平台运行;2.标准API抽象操作系统差异;3.类在运行时动态加载,保证一致性。

Java的较新版本如何解决平台特定问题?Java的较新版本如何解决平台特定问题?May 02, 2025 am 12:18 AM

Java的最新版本通过JVM优化、标准库改进和第三方库支持有效解决平台特定问题。1)JVM优化,如Java11的ZGC提升了垃圾回收性能。2)标准库改进,如Java9的模块系统减少平台相关问题。3)第三方库提供平台优化版本,如OpenCV。

说明JVM执行的字节码验证的过程。说明JVM执行的字节码验证的过程。May 02, 2025 am 12:18 AM

JVM的字节码验证过程包括四个关键步骤:1)检查类文件格式是否符合规范,2)验证字节码指令的有效性和正确性,3)进行数据流分析确保类型安全,4)平衡验证的彻底性与性能。通过这些步骤,JVM确保只有安全、正确的字节码被执行,从而保护程序的完整性和安全性。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),