基本思想:归并排序是一种典型的分治思想,把一个无序列表一分为二,对每个子序列再一分为二,继续下去,直到无法再进行划分为止。然后,就开始合并的过程,对每个子序列和另外一个子序列的元素进行比较,依次把小元素放入结果序列中进行合并,最终完成归并排序。
归并操作过程:
申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
设定两个指针,最初位置分别为两个已经排序序列的起始位置
比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
重复步骤3直到某一指针达到序列尾
将另一序列剩下的所有元素直接复制到合并序列尾
上述说法是理论表述,下面用一个实际例子说明:
例如一个无序数组
[6,2,3,1,7]
首先将这个数组通过递归方式进行分解,直到:
[6],[2],[3],[1],[7]
然后开始合并排序,也是用递归的方式进行:
两个两个合并排序,得到:
[2,6],[1,3],[7]
上一步中,其实也是按照本步骤的方式合并的,只不过由于每个list中一个数,不能完全显示过程。下面则可以完全显示过程。
初始:
a = [2,6] b = [1,3] c = []
第1步,顺序从a,b中取出一个数字:2,1 比较大小后放入c中,并将该数字从原list中删除,结果是:
a = [2,6] b = [3] c = [1]
第2步,继续从a,b中按照顺序取出数字,也就是重复上面步骤,这次是:2,3 比较大小后放入c中,并将该数字从原list中删除,结果是:
a = [6] b = [3] c = [1,2]
第3步,再重复前边的步骤,结果是:
a = [6] b = [] c = [1,2,3]
最后一步,将6追加到c中,结果形成了:
a = [] b = [] c = [1,2,3,6]
通过反复应用上面的流程,实现[1,2,3,6]与[7]的合并
最终得到排序结果
[1,2,3,6,7]
本文列举了三种python的实现方法:
方法1:将前面讲述的过程翻译过来了,略先拙笨
#! /usr/bin/env python #coding:utf-8 def merge_sort(seq): if len(seq) ==1: return seq else: middle = len(seq)/2 left = merge_sort(seq[:middle]) right = merge_sort(seq[middle:]) i = 0 #left 计数 j = 0 #right 计数 k = 0 #总计数 while i < len(left) and j < len(right): if left[i] < right [j]: seq[k] = left[i] i +=1 k +=1 else: seq[k] = right[j] j +=1 k +=1 remain = left if i<j else right r = i if remain ==left else j while r<len(remain): seq[k] = remain[r] r +=1 k +=1 return seq
方法2:在按照顺序取数值方面,应用了list.pop()方法,代码更紧凑简洁
#! /usr/bin/env python #coding:utf-8 def merge_sort(lst): #此方法来自维基百科 if len(lst) <= 1: return lst def merge(left, right): merged = [] while left and right: merged.append(left.pop(0) if left[0] <= right[0] else right.pop(0)) while left: merged.append(left.pop(0)) while right: merged.append(right.pop(0)) return merged middle = int(len(lst) / 2) left = merge_sort(lst[:middle]) right = merge_sort(lst[middle:]) return merge(left, right)
方法3:原来在python的模块heapq中就提供了归并排序的方法,只要将分解后的结果导入该方法即可。
#! /usr/bin/env python #coding:utf-8 from heapq import merge def merge_sort(seq): if len(seq) <= 1: return m else: middle = len(seq)/2 left = merge_sort(seq[:middle]) right = merge_sort(seq[middle:]) return list(merge(left, right)) #heapq.merge() if __name__=="__main__": seq = [1,3,6,2,4] print merge_sort(seq)
更多Python编程中归并排序算法的实现步骤详细介绍相关文章请关注PHP中文网!

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python和C 在内存管理和控制方面的差异显着。 1.Python使用自动内存管理,基于引用计数和垃圾回收,简化了程序员的工作。 2.C 则要求手动管理内存,提供更多控制权但增加了复杂性和出错风险。选择哪种语言应基于项目需求和团队技术栈。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

选择Python还是C 取决于项目需求:1)Python适合快速开发、数据科学和脚本编写,因其简洁语法和丰富库;2)C 适用于需要高性能和底层控制的场景,如系统编程和游戏开发,因其编译型和手动内存管理。

Python在数据科学和机器学习中的应用广泛,主要依赖于其简洁性和强大的库生态系统。1)Pandas用于数据处理和分析,2)Numpy提供高效的数值计算,3)Scikit-learn用于机器学习模型构建和优化,这些库让Python成为数据科学和机器学习的理想工具。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

SublimeText3汉化版
中文版,非常好用

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

Atom编辑器mac版下载
最流行的的开源编辑器

禅工作室 13.0.1
功能强大的PHP集成开发环境