首页  >  文章  >  后端开发  >  Python抓取百度百科数据

Python抓取百度百科数据

高洛峰
高洛峰原创
2017-02-15 15:13:251359浏览

抓取策略

Python抓取百度百科数据
确定目标:确定抓取哪个网站的哪些页面的哪部分数据。本实例抓取百度百科python词条页面以及python相关词条页面的标题和简介。
分析目标:分析要抓取的url的格式,限定抓取范围。分析要抓取的数据的格式,本实例中就要分析标题和简介这两个数据所在的标签的格式。分析要抓取的页面编码的格式,在网页解析器部分,要指定网页编码,然后才能进行正确的解析。
编写代码:在网页解析器部分,要使用到分析目标得到的结果。
执行爬虫:进行数据抓取。

分析目标

1、url格式
进入百度百科python词条页面,页面中相关词条的链接比较统一,大都是/view/xxx.htm
Python抓取百度百科数据

2、数据格式
标题位于类lemmaWgt-lemmaTitle-title下的h1子标签,简介位于类lemma-summary下。
Python抓取百度百科数据
Python抓取百度百科数据

3、编码格式
查看页面编码格式,为utf-8。
Python抓取百度百科数据

经过以上分析,得到结果如下:
Python抓取百度百科数据

代码编写

项目结构

在sublime下,新建文件夹baike-spider,作为项目根目录。
新建spider_main.py,作为爬虫总调度程序。
新建url_manger.py,作为url管理器。
新建html_downloader.py,作为html下载器。
新建html_parser.py,作为html解析器。
新建html_outputer.py,作为写出数据的工具。
最终项目结构如下图:
Python抓取百度百科数据

spider_main.py

# coding:utf-8
import url_manager, html_downloader, html_parser, html_outputer

class SpiderMain(object):
    def __init__(self):
        self.urls = url_manager.UrlManager()
        self.downloader = html_downloader.HtmlDownloader()
        self.parser = html_parser.HtmlParser()
        self.outputer = html_outputer.HtmlOutputer()

    def craw(self, root_url):
        count = 1
        self.urls.add_new_url(root_url)
        while self.urls.has_new_url():
            try:
                new_url = self.urls.get_new_url()
                print('craw %d : %s' % (count, new_url))
                html_cont = self.downloader.download(new_url)
                new_urls, new_data = self.parser.parse(new_url, html_cont)
                self.urls.add_new_urls(new_urls)
                self.outputer.collect_data(new_data)

                if count == 10:
                    break

                count = count + 1
            except:
                print('craw failed')

        self.outputer.output_html()


if __name__=='__main__':
    root_url = 'http://baike.baidu.com/view/21087.htm'
    obj_spider = SpiderMain()
    obj_spider.craw(root_url)

url_manger.py

# coding:utf-8
class UrlManager(object):
    def __init__(self):
        self.new_urls = set()
        self.old_urls = set()

    def add_new_url(self, url):
        if url is None:
            return
        if url not in self.new_urls and url not in self.old_urls:
            self.new_urls.add(url)

    def add_new_urls(self, urls):
        if urls is None or len(urls) == 0:
            return
        for url in urls:
            self.add_new_url(url)

    def has_new_url(self):
        return len(self.new_urls) != 0

    def get_new_url(self):
        new_url = self.new_urls.pop()
        self.old_urls.add(new_url)
        return new_url

html_downloader.py

# coding:utf-8
import urllib.request

class HtmlDownloader(object):
    def download(self, url):
        if url is None:
            return None
        response = urllib.request.urlopen(url)
        if response.getcode() != 200:
            return None
        return response.read()

html_parser.py

# coding:utf-8
from bs4 import BeautifulSoup
import re
from urllib.parse import urljoin

class HtmlParser(object):
    def _get_new_urls(self, page_url, soup):
        new_urls = set()
        # /view/123.htm
        links = soup.find_all('a', href=re.compile(r'/view/\d+\.htm'))
        for link in links:
            new_url = link['href']
            new_full_url = urljoin(page_url, new_url)
            # print(new_full_url)
            new_urls.add(new_full_url)
        #print(new_urls)
        return new_urls

    def _get_new_data(self, page_url, soup):
        res_data = {}
        # url
        res_data['url'] = page_url
        # <dd class="lemmaWgt-lemmaTitle-title"> <h1>Python</h1>
        title_node = soup.find('dd', class_='lemmaWgt-lemmaTitle-title').find('h1')
        res_data['title'] = title_node.get_text()
        # <p class="lemma-summary" label-module="lemmaSummary">
        summary_node = soup.find('p', class_='lemma-summary')
        res_data['summary'] = summary_node.get_text()
        # print(res_data)
        return res_data

    def parse(self, page_url, html_cont):
        if page_url is None or html_cont is None:
            return
        soup = BeautifulSoup(html_cont, 'html.parser')
        # print(soup.prettify())
        new_urls = self._get_new_urls(page_url, soup)
        new_data = self._get_new_data(page_url, soup)
        # print('mark')
        return new_urls, new_data

html_outputer.py

# coding:utf-8
class HtmlOutputer(object):
    def __init__(self):
        self.datas = []

    def collect_data(self, data):
        if data is None:
            return
        self.datas.append(data)

    def output_html(self):
        fout = open('output.html','w', encoding='utf-8')

        fout.write('<html>')
        fout.write('<body>')
        fout.write('<table>')

        for data in self.datas:
            fout.write('<tr>')
            fout.write('<td>%s</td>' % data['url'])
            fout.write('<td>%s</td>' % data['title'])
            fout.write('<td>%s</td>' % data['summary'])
            fout.write('</tr>')

        fout.write('</table>')
        fout.write('</body>')
        fout.write('</html>')

        fout.close()

运行

在命令行下,执行python spider_main.py

编码问题

问题描述:UnicodeEncodeError: 'gbk' codec can't encode character 'xa0' in position ...

使用Python写文件的时候,或者将网络数据流写入到本地文件的时候,大部分情况下会遇到这个问题。网络上有很多类似的文章讲述如何解决这个问题,但是无非就是encode,decode相关的,这是导致该问题出现的真正原因吗?不是的。很多时候,我们使用了decode和encode,试遍了各种编码,utf8,utf-8,gbk,gb2312等等,该有的编码都试遍了,可是仍然出现该错误,令人崩溃。

在windows下面编写python脚本,编码问题很严重。将网络数据流写入文件时,我们会遇到几个编码:
1、#encoding='XXX'
这里(也就是python文件第一行的内容)的编码是指该python脚本文件本身的编码,无关紧要。只要XXX和文件本身的编码相同就行了。
比如notepad++"格式"菜单里面里可以设置各种编码,这时需要保证该菜单里设置的编码和encoding XXX相同就行了,不同的话会报错。

2、网络数据流的编码
比如获取网页,那么网络数据流的编码就是网页的编码。需要使用decode解码成unicode编码。

3、目标文件的编码
将网络数据流写入到新文件,写文件代码如下:

fout = open('output.html','w')
fout.write(str)

在windows下面,新文件的默认编码是gbk,python解释器会用gbk编码去解析我们的网络数据流str,然而str是decode过的unicode编码,这样的话就会导致解析不了,出现上述问题。 解决的办法是改变目标文件的编码:

fout = open('output.html','w', encoding='utf-8')

运行结果

Python抓取百度百科数据
Python抓取百度百科数据

更多Python抓取百度百科数据 相关文章请关注PHP中文网!

声明:
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn