本篇文章主要介绍了python实现字符串连接的三种方法及其效率、适用场景详解,具有一定的参考价值,感兴趣的小伙伴们可以参考一下。
python字符串连接的方法,一般有以下三种:
方法1:直接通过加号(+)操作符连接
website = 'python' + 'tab' + '.com'
方法2:join方法
listStr = ['python', 'tab', '.com'] website = ''.join(listStr)
方法3:替换
website = '%s%s%s' % ('python', 'tab', '.com')
下面再来说一下三种方法的不同
方法1,使用简单直接,但是网上不少人说这种方法效率低
之所以说python 中使用 + 进行字符串连接的操作效率低下,是因为python中字符串是不可变的类型,使用 + 连接两个字符串时会生成一个新的字符串,生成新的字符串就需要重新申请内存,当连续相加的字符串很多时(a+b+c+d+e+f+...) ,效率低下就是必然的了
方法2,使用略复杂,但对多个字符进行连接时效率高,只会有一次内存的申请。而且如果是对list的字符进行连接的时候,这种方法必须是首选
方法3:字符串格式化,这种方法非常常用,本人也推荐使用该方法
下面用实验来说明字符串连接的效率问题。
比较对象:加号连接 VS join连接
python版本: python2.7
系统环境:CentOS
实验一:
# -*- coding: utf-8 -*- from time import time def method1(): t = time() for i in xrange(100000): s = 'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab' print time() - t def method2(): t = time() for i in xrange(100000): s = ''.join(['pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab']) print time() -t method1() method2()
结果:
0.641695976257
0.341440916061
实验二:
# -*- coding: utf-8 -*- from time import time def method1(): t = time() for i in xrange(100000): s = 'pythontab'+'pythontab'+'pythontab'+'pythontab' print time() - t def method2(): t = time() for i in xrange(100000): s = ''.join(['pythontab','pythontab','pythontab','pythontab']) print time() -t method1() method2()
结果:
0.0265691280365
0.0522091388702
上面两个实验出现了完全不同的结果,分析这两个实验唯一不同的是:字符串连接个数。
结论:加号连接效率低是在连续进行多个字符串连接的时候出现的,如果连接的个数较少,加号连接效率反而比join连接效率高
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持PHP中文网。
更多python实现字符串连接的三种方法及其效率、适用场景详解相关文章请关注PHP中文网!

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python和C 在内存管理和控制方面的差异显着。 1.Python使用自动内存管理,基于引用计数和垃圾回收,简化了程序员的工作。 2.C 则要求手动管理内存,提供更多控制权但增加了复杂性和出错风险。选择哪种语言应基于项目需求和团队技术栈。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

选择Python还是C 取决于项目需求:1)Python适合快速开发、数据科学和脚本编写,因其简洁语法和丰富库;2)C 适用于需要高性能和底层控制的场景,如系统编程和游戏开发,因其编译型和手动内存管理。

Python在数据科学和机器学习中的应用广泛,主要依赖于其简洁性和强大的库生态系统。1)Pandas用于数据处理和分析,2)Numpy提供高效的数值计算,3)Scikit-learn用于机器学习模型构建和优化,这些库让Python成为数据科学和机器学习的理想工具。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

WebStorm Mac版
好用的JavaScript开发工具

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。