搜索
首页后端开发C#.Net教程C#并发编程·经典实例读书笔记

前言

最近在看《C# 并发编程 · 经典实例》这本书,这不是一本理论书,反而这是一本主要讲述怎么样更好的使用好目前 C#.NET 为我们提供的这些 API 的一本书,书中绝大部分是一些实例,在日常开发中还是经常会使用到。

书中一些观点还是比较赞同,比如作者说目前绝大多数的图书对关于并发多线程等这些内容放到最后,而缺少一本介绍并发编程的入门指引和参考。

另外一个观点是绝大多数国内的技术人员认为技术越底层就牛逼,而做上层应用的就是“码农”,作者反对了这一观点,其实能利用好现有的库也是一种能力,虽然说理解基础知识对日常生活仍然有帮助,但最好从更高级的抽象概念来学习。

异步基础

任务暂停,休眠

异步方式暂停或者休眠任务,可以使用 Task.Delay();

static async Task<T> DelayResult<T>(T result, TimeSpan delay) {
    await Task.Delay(delay);
    return result;
}

异步重试机制

一个简单的指数退避策略,重试的时间会逐次增加,在访问 Web 服务时,一般采用此种策略。

static async Task<string> DownloadString(string uri) {
    using (var client = new HttpClient()) {
        var nextDealy = TimeSpan.FromSeconds(1);
        for (int i = 0; i != 3; ++i) {
            try {
                return await client.GetStringAsync(uri);
            }
            catch {
            }
            await Task.Delay(nextDealy);
            nextDealy = nextDealy + nextDealy;
        }
        //最后重试一次,抛出出错信息           
        return await client.GetStringAsync(uri);
    }
}

报告进度

异步操作中,经常需要展示操作进度,可以使用 IProcess8742468051c85b06f0a0af9e3e506b5c 和 Process8742468051c85b06f0a0af9e3e506b5c。

static async Task MyMethodAsync(IProgress<double> progress) {
    double precentComplete = 0;
    bool done = false;
    while (!done) {
        await Task.Delay(100);
        if (progress != null) {
            progress.Report(precentComplete);
        }
        precentComplete++;
        if (precentComplete == 100) {
            done = true;
        }
    }
}
public static void Main(string[] args) {
    Console.WriteLine("starting...");
    var progress = new Progress<double>();
    progress.ProgressChanged += (sender, e) => {
        Console.WriteLine(e);
    };
    MyMethodAsync(progress).Wait();
    Console.WriteLine("finished");
}

等待一组任务

同时执行几个任务,等待他们全部完成

Task task1 = Task.Delay(TimeSpan.FromSeconds(1));
Task task2 = Task.Delay(TimeSpan.FromSeconds(2));
Task task3 = Task.Delay(TimeSpan.FromSeconds(1));
Task.WhenAll(task1, task2, task3).Wait();

等待任意一个任务完成

执行若干任务,只需要对其中一个的完成进行响应。主要用于对一个操作进行多种独立的尝试,只要其中一个尝试完成,任务就算完成。

static async Task<int> FirstResponseUrlAsync(string urlA, string urlB) {
    var httpClient = new HttpClient();
    Task<byte[]> downloadTaskA = httpClient.GetByteArrayAsync(urlA);
    Task<byte[]> downloadTaskB = httpClient.GetByteArrayAsync(urlB);
    Task<byte[]> completedTask = await Task.WhenAny(downloadTaskA, downloadTaskB);
    byte[] data = await completedTask;
    return data.Length;
}

集合

不可变栈和队列

需要一个不会经常修改,可以被多个线程安全访问的栈和队列。他们的API和 Stack8742468051c85b06f0a0af9e3e506b5c 和 Queue8742468051c85b06f0a0af9e3e506b5c 非常相似。性能上,不可变栈(LIFO)和队列(FIFO)与标准的栈和队列具有相同的时间复杂度。但是在需要频繁修改的简单情况下,标准栈和队列速度更快。

在内部实现上,当对一个对象进行覆盖(重新赋值)的时候,不可变集合采用的是返回一个修改过的集合,原始集合引用是不变化的,也就是说如果另外一个变量引用了相同的对象,那么它(另外的变量)是不会变化的。

ImmutableStack

var stack = ImmutableStack<int>.Empty;
stack = stack.Push(11);  
var biggerstack = stack.Push(12);
foreach (var item in biggerstack) {
    Console.WriteLine(item);
}  // output: 12 11
int lastItem;
stack = stack.Pop(out lastItem);
Console.WriteLine(lastItem);  //output: 11

实际上,两个栈内部共享了存储 11 的内存,这种实现方式效率很高,而且每个实例都是线程安全的。

ImmutableQueue

var queue = ImmutableQueue<int>.Empty;
queue = queue.Enqueue(11);
queue = queue.Enqueue(12);
foreach (var item in queue) {
    Console.WriteLine(item);
} // output: 11  12
int nextItem;
queue = queue.Dequeue(out nextItem);
Console.WriteLine(nextItem); //output: 11

不可变列表和集合

ImmutableList

时间复杂度

911.jpg

有些时候需要这样一个数据结构:支持索引,不经常修改,可以被多线程安全的访问。

var list = ImmutableList<int>.Empty;
list = list.Insert(0, 11);
list = list.Insert(0, 12);
foreach (var item in list) {
    Console.WriteLine(item);
} // 12 11

ImmutableList8742468051c85b06f0a0af9e3e506b5c 可以索引,但是注意性能问题,不能用它来简单的替代 List8742468051c85b06f0a0af9e3e506b5c。它的内部实现是用的二叉树组织的数据,这么做是为了让不同的实例之间共享内存。

ImmutableHashSet

有些时候需要这样一个数据结构:不需要存放重复内容,不经常修改,可以被多个线程安全访问。时间复杂度 O(log N)。

var set = ImmutableHashSet<int>.Empty;
set = set.Add(11);
set = set.Add(12);
foreach (var item in set) {
    Console.WriteLine(item);
} // 11 12 顺序不定

线程安全字典

一个线程安全的键值对集合,多个线程读写仍然能保持同步。

ConcurrentDictionary

混合使用了细粒度的锁定和无锁技术,它是最实用的集合类型之一。

var dictionary = new ConcurrentDictionary<int, string>();
dictionary.AddOrUpdate(0, key => "Zero", (key, oldValue) => "Zero");

如果多个线程读写一个共享集合,实用 ConcurrentDictionary8c189faf63255a5ea96468ba21dd0564 是最合适的。如果不会频繁修改,那么更适合使用 ImmutableDictionary8c189faf63255a5ea96468ba21dd0564 。

它最适合用于在需要共享数据的场合,即多个线程共享一个集合,如果一些线程只添加元素一些线程只移除元素,那最好使用 生产者/消费者集合(BlockingCollection8742468051c85b06f0a0af9e3e506b5c)。

初始化共享资源

程序多个地方使用一个值,第一次访问时对它进行初始化。

static int _simpleVluae;
static readonly Lazy<Task<int>> shardAsyncInteger =
    new Lazy<Task<int>>(async () => {
        await Task.Delay(2000).ConfigureAwait(false);
        return _simpleVluae++;
    });
public static void Main(string[] args) {

    int shareValue = shardAsyncInteger.Value.Result;
    Console.WriteLine(shareValue); // 0
    shareValue = shardAsyncInteger.Value.Result;
    Console.WriteLine(shareValue); // 0
    shareValue = shardAsyncInteger.Value.Result;
    Console.WriteLine(shareValue); // 0
}

以上就是C#并发编程·经典实例读书笔记的内容,更多相关内容请关注PHP中文网(www.php.cn)!


声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
如何使用C#编写时间序列预测算法如何使用C#编写时间序列预测算法Sep 19, 2023 pm 02:33 PM

如何使用C#编写时间序列预测算法时间序列预测是一种通过分析过去的数据来预测未来数据趋势的方法。它在很多领域,如金融、销售和天气预报中有广泛的应用。在本文中,我们将介绍如何使用C#编写时间序列预测算法,并附上具体的代码示例。数据准备在进行时间序列预测之前,首先需要准备好数据。一般来说,时间序列数据应该具有足够的长度,并且是按照时间顺序排列的。你可以从数据库或者

如何使用Redis和C#开发分布式事务功能如何使用Redis和C#开发分布式事务功能Sep 21, 2023 pm 02:55 PM

如何使用Redis和C#开发分布式事务功能引言分布式系统的开发中,事务处理是一项非常重要的功能。事务处理能够保证在分布式系统中的一系列操作要么全部成功,要么全部回滚。Redis是一种高性能的键值存储数据库,而C#是一种广泛应用于开发分布式系统的编程语言。本文将介绍如何使用Redis和C#来实现分布式事务功能,并提供具体代码示例。I.Redis事务Redis

如何实现C#中的人脸识别算法如何实现C#中的人脸识别算法Sep 19, 2023 am 08:57 AM

如何实现C#中的人脸识别算法人脸识别算法是计算机视觉领域中的一个重要研究方向,它可以用于识别和验证人脸,广泛应用于安全监控、人脸支付、人脸解锁等领域。在本文中,我们将介绍如何使用C#来实现人脸识别算法,并提供具体的代码示例。实现人脸识别算法的第一步是获取图像数据。在C#中,我们可以使用EmguCV库(OpenCV的C#封装)来处理图像。首先,我们需要在项目

Redis在C#开发中的应用:如何实现高效的缓存更新Redis在C#开发中的应用:如何实现高效的缓存更新Jul 30, 2023 am 09:46 AM

Redis在C#开发中的应用:如何实现高效的缓存更新引言:在Web开发中,缓存是提高系统性能的常用手段之一。而Redis作为一款高性能的Key-Value存储系统,能够提供快速的缓存操作,为我们的应用带来了不少便利。本文将介绍如何在C#开发中使用Redis,实现高效的缓存更新。Redis的安装与配置在开始之前,我们需要先安装Redis并进行相应的配置。你可以

如何使用C#编写动态规划算法如何使用C#编写动态规划算法Sep 20, 2023 pm 04:03 PM

如何使用C#编写动态规划算法摘要:动态规划是求解最优化问题的一种常用算法,适用于多种场景。本文将介绍如何使用C#编写动态规划算法,并提供具体的代码示例。一、什么是动态规划算法动态规划(DynamicProgramming,简称DP)是一种用来求解具有重叠子问题和最优子结构性质的问题的算法思想。动态规划将问题分解成若干个子问题来求解,通过记录每个子问题的解,

如何实现C#中的图像压缩算法如何实现C#中的图像压缩算法Sep 19, 2023 pm 02:12 PM

如何实现C#中的图像压缩算法摘要:图像压缩是图像处理领域中的一个重要研究方向,本文将介绍在C#中实现图像压缩的算法,并给出相应的代码示例。引言:随着数字图像的广泛应用,图像压缩成为了图像处理中的重要环节。压缩能够减小存储空间和传输带宽,并能提高图像处理的效率。在C#语言中,我们可以通过使用各种图像压缩算法来实现对图像的压缩。本文将介绍两种常见的图像压缩算法:

C#开发中如何处理跨域请求和安全性问题C#开发中如何处理跨域请求和安全性问题Oct 08, 2023 pm 09:21 PM

C#开发中如何处理跨域请求和安全性问题在现代的网络应用开发中,跨域请求和安全性问题是开发人员经常面临的挑战。为了提供更好的用户体验和功能,应用程序经常需要与其他域或服务器进行交互。然而,浏览器的同源策略导致了这些跨域请求被阻止,因此需要采取一些措施来处理跨域请求。同时,为了保证数据的安全性,开发人员还需要考虑一些安全性问题。本文将探讨C#开发中如何处理跨域请

如何实现C#中的遗传算法如何实现C#中的遗传算法Sep 19, 2023 pm 01:07 PM

如何在C#中实现遗传算法引言:遗传算法是一种模拟自然选择和基因遗传机制的优化算法,其主要思想是通过模拟生物进化的过程来搜索最优解。在计算机科学领域,遗传算法被广泛应用于优化问题的解决,例如机器学习、参数优化、组合优化等。本文将介绍如何在C#中实现遗传算法,并提供具体的代码示例。一、遗传算法的基本原理遗传算法通过使用编码表示解空间中的候选解,并利用选择、交叉和

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前By尊渡假赌尊渡假赌尊渡假赌
仓库:如何复兴队友
4 周前By尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
4 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版