介绍
斐波那契数列,又称黄金分割数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下递归的方法定义:
F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*) 。
1. 元组实现
fibs = [0, 1] for i in range(8): fibs.append(fibs[-2] + fibs[-1])
这能得到一个在指定范围内的斐波那契数列的列表。
2. 迭代器实现
class Fibs: def __init__(self): self.a = 0 self.b = 1 def next(self): self.a, self.b = self.b, self.a + self.b return self.a def __iter__(self): return self
这将得到一个无穷的数列,可以采用如下方式访问:
fibs = Fibs() for f in fibs: if f > 1000: print f break else: print f
3. 通过定制类实现
class Fib(object): def __getitem__(self, n): if isinstance(n, int): a, b = 1, 1 for x in range(n): a, b = b, a + b return a elif isinstance(n, slice): start = n.start stop = n.stop a, b = 1, 1 L = [] for x in range(stop): if x >= start: L.append(a) a, b = b, a + b return L else: raise TypeError("Fib indices must be integers")
这样可以得到一个类似于序列的数据结构,可以通过下标来访问数据:
f = Fib() print f[0:5] print f[:10]
4.Python实现比较简易的斐波那契数列示例
先放一个斐波那契数列出来瞧瞧…
0 1 1 2 3 5 8 13 21 34 55 89 144 233...
首先给头两个变量赋值:
i, j = 0, 1
当然也可以这样写:
i = 0 j = 1
接着定个范围,就10000之内好了:
while i < 10000:
然后在while语句中输出i并设计逻辑:
print i, i, j = j, i+j
在这里需要注意:“i, j = i, i+j”这条代码不能写成如下所示:
i = j j = i+j
如果写成这样,j就不是前两位相加的值,而是已经被j赋过值的i和j相加的值,这样的话输出的数列会如下所示:
0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
正确的整片代码如下所示:
i, j = 0, 1 while i < 10000: print i, i, j = j, i+j
最后展示运行结果:
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765
总结
以上就是关于利用Python实现斐波那契数列的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流。
更多python实现斐波那契数列的方法示例相关文章请关注PHP中文网!

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python和C 在内存管理和控制方面的差异显着。 1.Python使用自动内存管理,基于引用计数和垃圾回收,简化了程序员的工作。 2.C 则要求手动管理内存,提供更多控制权但增加了复杂性和出错风险。选择哪种语言应基于项目需求和团队技术栈。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

选择Python还是C 取决于项目需求:1)Python适合快速开发、数据科学和脚本编写,因其简洁语法和丰富库;2)C 适用于需要高性能和底层控制的场景,如系统编程和游戏开发,因其编译型和手动内存管理。

Python在数据科学和机器学习中的应用广泛,主要依赖于其简洁性和强大的库生态系统。1)Pandas用于数据处理和分析,2)Numpy提供高效的数值计算,3)Scikit-learn用于机器学习模型构建和优化,这些库让Python成为数据科学和机器学习的理想工具。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SublimeText3 Linux新版
SublimeText3 Linux最新版

Dreamweaver Mac版
视觉化网页开发工具

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)