搜索
首页后端开发Python教程python xapian存储结构

python xapian存储结构

Dec 09, 2016 pm 02:21 PM
python

在项目中为了支持搜索服务,我们使用xapian作为后端的搜索引擎.其因性能良好以及易用受到大家欢迎.下面是基本代码: 

import xapian
import posixpath
def get_db_path():
    XAPIAN_ROOT = '/tmp/'
    xapian_user_database_path = posixpath.join(XAPIAN_ROOT, u'user_index')
    return xapian_user_database_path
def add_document(database, words):
    doc = xapian.Document()
    for w in words:
        doc.add_term(w)
    database.add_document(doc)
def build_index():
    user_database = xapian.WritableDatabase(get_db_path(), xapian.DB_CREATE_OR_OPEN)
    words = ['a', 'b', 'c']
    add_document(user_database, words)
def search(words, offset=0, length=10):
    user_database = xapian.Database(get_db_path())
    enquire = xapian.Enquire(user_database)
    query = xapian.Query(xapian.Query.OP_AND, words)
    enquire.set_query(query)
    return enquire.get_mset(int(offset), int(length))
def _show_q_results(matches):
    print '%i results found.' % matches.get_matches_estimated()
    print 'Results 1 - %i:' % matches.size()
    for match in matches:
        print '%i: %i%% docid=%i [%s]' % (match.rank + 1,
                                          match.percent,
                                          match.docid,
                                          match.document.get_data()
                                          )
if __name__ == '__main__':
    #index 
    build_index()
    
    #search
    _show_q_results(search(['a','b']))

虽然使用起来很简单,但是我一直对于他的存储引擎有些好奇,所以看了一下最新的存储引擎brass的实现.下面是整个数据目录的层次结构: 
/tmp/user_index 
flintlock 
iamchert 
postlist.baseA 
postlist.baseB 
postlist.DB //存储所有term 到 docid的映射. 
record.baseA 
record.baseB 
record.DB //存储所有docid 到 相应的数据的映射 
termlist.baseA 
termlist.baseB 
termlist.DB //存储所有docid 到 相应的 term的映射. 

brass存储引擎采用的数据结构是BTree.所以上面每个*.DB都是存储一个BTree的.*.baseA/B则是存储相应的.DB的meta信息.包括这个大的数据文件有哪些数据块已经被使用,哪些空闲的bitmap,以及版本号等等相关信息. 
BTree在xapian中表示为N Level.每个level对应于BTree的一层.并且维护这一层的一个cursor.用于指向当前正在访问的某一个数据块,以及数据块中的某一个位置.其中每个数据块的数据结构如下: 

from @brass_table.cc
/* A B-tree comprises (a) a base file, containing essential information (Block
   size, number of the B-tree root block etc), (b) a bitmap, the Nth bit of the
   bitmap being set if the Nth block of the B-tree file is in use, and (c) a
   file DB containing the B-tree proper. The DB file is divided into a sequence
   of equal sized blocks, numbered 0, 1, 2 ... some of which are free, some in
   use. Those in use are arranged in a tree.
   Each block, b, has a structure like this:
     R L M T D o1 o2 o3 ... oN <gap> [item] .. [item] .. [item] ...
     <---------- D ----------> <-M->
   And then,
   R = REVISION(b)  is the revision number the B-tree had when the block was
                    written into the DB file.
   L = GET_LEVEL(b) is the level of the block, which is the number of levels
                    towards the root of the B-tree structure. So leaf blocks
                    have level 0 and the one root block has the highest level
                    equal to the number of levels in the B-tree.
   M = MAX_FREE(b)  is the size of the gap between the end of the directory and
                    the first item of data. (It is not necessarily the maximum
                    size among the bits of space that are free, but I can&#39;t
                    think of a better name.)
   T = TOTAL_FREE(b)is the total amount of free space left in b.
   D = DIR_END(b)   gives the offset to the end of the directory.
   o1, o2 ... oN are a directory of offsets to the N items held in the block.
   The items are key-tag pairs, and as they occur in the directory are ordered
   by the keys.
   An item has this form:
           I K key x C tag
             <--K-->
           <------I------>
   A long tag presented through the API is split up into C tags small enough to
   be accommodated in the blocks of the B-tree. The key is extended to include
   a counter, x, which runs from 1 to C. The key is preceded by a length, K,
   and the whole item with a length, I, as depicted above.

上面来自于xapian的注释已经很清楚的说明了每个block的数据构成.除了数据元信息,就是由item组成的小的数据单元.其中每个小的item包括I(整个数据单元的长度),K(数据单元key的长度+x(key标示符)),C(表示对应的这个key有多少个item组成,因为某一个key对应的value太大的话,会进行value切分.所以C就表示总计有多少分.而之前的那个x则表示这个单元是第几份数据,这个如果需要读取这个key的整个大value就可以根据序号x进行合并.),tag就是我们刚才说的key对应的value,只不过xapian把它定义为tag.因为他是一个通用存储结构,所以这样定义也比较说的通.比如说在一颗BTree的非叶子节点tag存储的是下一层数据块的地址.对于叶子节点来说则存储相关的数据.现在整个树的存储结构已经清晰的展示出来了. 

这里面有一个问题比较有意思的是postlist的存储,设想某一个热点词包含有很多很多的docid,比如说有100w个.那么当我们进行增量更新的时候,想要把某个docid从这个term删除掉,那么怎么才能尽快查找到这个docid在哪个数据块中呢?作者采用了term+docid作为BTree的key的方式来解决这个问题.value则是所有的大于这个docid的docid.并且每个块设定一个大小.这样就能让我们能尽快的定位一个docid在哪个block中,而不用读取所有的block然后再去查找了. 

xapian还支持多个reader,单线程writer的方式进行增量更新.采用的类似数据库中的MVCC的方式,这样就不会因为更新把读操作阻塞住了. 

目前作者正在开发replication方式,可以支持增量更新到其他机器.这样就能做到数据可靠(不会应为单机磁盘损坏导致数据丢失)以及高可用性(单机不可用,应用层可以切换到备用机器上)了. 

BTW:我这两天看了xapian devel的邮件列表,虽然没有提交问题,但是看了作者(Olly Betts)对于每个问题都会给出耐心又详尽的答复,他人真的是很好.很是佩服.

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python vs.C:申请和用例Python vs.C:申请和用例Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时的Python计划:一种现实的方法2小时的Python计划:一种现实的方法Apr 11, 2025 am 12:04 AM

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python:探索其主要应用程序Python:探索其主要应用程序Apr 10, 2025 am 09:41 AM

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

您可以在2小时内学到多少python?您可以在2小时内学到多少python?Apr 09, 2025 pm 04:33 PM

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

如何在10小时内通过项目和问题驱动的方式教计算机小白编程基础?如何在10小时内通过项目和问题驱动的方式教计算机小白编程基础?Apr 02, 2025 am 07:18 AM

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

如何在使用 Fiddler Everywhere 进行中间人读取时避免被浏览器检测到?如何在使用 Fiddler Everywhere 进行中间人读取时避免被浏览器检测到?Apr 02, 2025 am 07:15 AM

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...

Python 3.6加载Pickle文件报错"__builtin__"模块未找到怎么办?Python 3.6加载Pickle文件报错"__builtin__"模块未找到怎么办?Apr 02, 2025 am 07:12 AM

Python3.6环境下加载Pickle文件报错:ModuleNotFoundError:Nomodulenamed...

如何提高jieba分词在景区评论分析中的准确性?如何提高jieba分词在景区评论分析中的准确性?Apr 02, 2025 am 07:09 AM

如何解决jieba分词在景区评论分析中的问题?当我们在进行景区评论分析时,往往会使用jieba分词工具来处理文�...

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。