变量存储在内存中的值。这就意味着在创建变量时会在内存中开辟一个空间。
基于变量的数据类型,解释器会分配指定内存,并决定什么数据可以被存储在内存中。
因此,变量可以指定不同的数据类型,这些变量可以存储整数,小数或字符。
变量赋值
Python中的变量不需要声明,变量的赋值操作既是变量声明和定义的过程。
每个变量在内存中创建,都包括变量的标识,名称和数据这些信息。
每个变量在使用前都必须赋值,变量赋值以后该变量才会被创建。
等号(=)用来给变量赋值。
等号(=)运算符左边是一个变量名,等号(=)运算符右边是存储在变量中的值。例如:
#!/usr/bin/python counter = 100 # An integer assignment miles = 1000.0 # A floating point name = "John" # A string print counter print miles print name
以上实例中,100,1000.0和"John"分别赋值给counter,miles,name变量。
执行以上程序会输出如下结果:
100
1000.0
John
多个变量赋值
Python允许你同时为多个变量赋值。例如:
a = b = c = 1
以上实例,创建一个整型对象,值为1,三个变量被分配到相同的内存空间上。
您也可以为多个对象指定多个变量。例如:
a, b, c = 1, 2, "john"
以上实例,两个整型对象1和2的分配给变量a和b,字符串对象"john"分配给变量c。
标准数据类型
在内存中存储的数据可以有多种类型。
例如,person.s年龄作为一个数值存储和他或她的地址是字母数字字符存储。
Python有一些标准类型用于定义操作上,他们和为他们每个人的存储方法可能。
Python有五个标准的数据类型:
Numbers(数字)
String(字符串)
List(列表)
Tuple(元组)
Dictionary(字典)
Python数字
数字数据类型用于存储数值。
他们是不可改变的数据类型,这意味着改变数字数据类型会分配一个新的对象。
当你指定一个值时,Number对象就会被创建:
var1 = 1
var2 = 10
您也可以使用del语句删除一些对象引用。
del语句的语法是:
del var1[,var2[,var3[....,varN]]]]
您可以通过使用del语句删除单个或多个对象。例如:
del var
del var_a, var_b
Python支持四种不同的数值类型:
int(有符号整型)
long(长整型[也可以代表八进制和十六进制])
float(浮点型)
complex(复数)
实例
一些数值类型的实例:
int
long
float
complex
10 51924361L 0.0 3.14j
100 -0x19323L 15.20 45.j
-786 0122L -21.9 9.322e-36j
080 0xDEFABCECBDAECBFBAEl 32.3+e18 .876j
-0490 535633629843L -90. -.6545+0J
-0x260 -052318172735L -32.54e100 3e+26J
0x69 -4721885298529L 70.2-E12 4.53e-7j
长整型也可以使用小写"L",但是还是建议您使用大写"L",避免与数字"1"混淆。Python使用"L"来显示长整型。
Python还支持复数,复数由实数部分和虚数部分构成,可以用a + bj,或者complex(a,b)表示, 复数的实部a和虚部b都是浮点型
Python字符串
字符串或串(String)是由数字、字母、下划线组成的一串字符。
一般记为 :
s="a1a2a3···"
它是编程语言中表示文本的数据类型。
python的字串列表有2种取值顺序:
从左到右索引默认0开始的,最大范围是字符串长度少1
从右到左索引默认-1开始的,最大范围是字符串开头
如果你的实要取得一段子串的话,可以用到变量[头下标:尾下标],就可以截取相应的字符串,其中下标是从0开始算起,可以是正数或负数,下标可以为空表示取到头或尾。
比如:
s = "ilovepython"
s[1:5]的结果是love。
当使用以冒号分隔的字符串,python返回一个新的对象,结果包含了以这对偏移标识的连续的内容,左边的开始是包含了下边界。
上面的结果包含了s[1]的值l,而取到的最大范围不包括上边界,就是s[5]的值p。
加号(+)是字符串连接运算符,星号(*)是重复操作。如下实例:
#!/usr/bin/python str = "Hello World!" print str # 输出完整字符串 print str[0] # 输出字符串中的第一个字符 print str[2:5] # 输出字符串中第三个至第五个之间的字符串 print str[2:] # 输出从第三个字符开始的字符串 print str * 2 # 输出字符串两次 print str + "TEST" # 输出连接的字符串
以上实例输出结果:
Hello World!
H
llo
llo World!
Hello World!Hello World!
Hello World!TEST
Python列表
List(列表) 是 Python 中使用最频繁的数据类型。
列表可以完成大多数集合类的数据结构实现。它支持字符,数字,字符串甚至可以包含列表(所谓嵌套)。
列表用[ ]标识。是python最通用的复合数据类型。看这段代码就明白。
列表中的值得分割也可以用到变量[头下标:尾下标],就可以截取相应的列表,从左到右索引默认0开始的,从右到左索引默认-1开始,下标可以为空表示取到头或尾。
加号(+)是列表连接运算符,星号(*)是重复操作。如下实例:
#!/usr/bin/python List = [ "abcd", 786 , 2.23, "john", 70.2 ] tinylist = [123, "john"] print List # 输出完整列表 print List[0] # 输出列表的第一个元素 print List[1:3] # 输出第二个至第三个的元素 print List[2:] # 输出从第三个开始至列表末尾的所有元素 print tinylist * 2 # 输出列表两次 print List + tinylist # 打印组合的列表
以上实例输出结果:
["abcd", 786, 2.23, "john", 70.200000000000003]
abcd
[786, 2.23]
[2.23, "john", 70.200000000000003]
[123, "john", 123, "john"]
["abcd", 786, 2.23, "john", 70.200000000000003, 123, "john"]
Python元组
元组是另一个数据类型,类似于List(列表)。
元组用"()"标识。内部元素用逗号隔开。但是元素不能二次赋值,相当于只读列表。
#!/usr/bin/python Tuple = ( "abcd", 786 , 2.23, "john", 70.2 ) tinytuple = (123, "john") print Tuple # 输出完整元组 print Tuple[0] # 输出列表的第一个元素 print Tuple[1:3] # 输出第二个至第三个的元素 print Tuple[2:] # 输出从第三个开始至列表末尾的所有元素 print tinytuple * 2 # 输出元组两次 print Tuple + tinytuple # 打印组合的元组
以上实例输出结果:
("abcd", 786, 2.23, "john", 70.2)
abcd
(786, 2.23)
(2.23, "john", 70.2)
(123, "john", 123, "john")
("abcd", 786, 2.23, "john", 70.2, 123, "john")
以下是元组无效的,因为元组是不允许更新的。而列表是允许更新的:
#!/usr/bin/python Tuple = ( "abcd", 786 , 2.23, "john", 70.2 ) List = [ "abcd", 786 , 2.23, "john", 70.2 ] Tuple[2] = 1000 # 错误!元组中是非法应用 List[2] = 1000 # 正确!列表中是合法应用
Python元字典
字典(dictionary)是除列表意外python之中最灵活的内置数据结构类型。列表是有序的对象结合,字典是无序的对象集合。
两者之间的区别在于:字典当中的元素是通过键来存取的,而不是通过偏移存取。
字典用"{ }"标识。字典由索引(key)和它对应的值value组成。
#!/usr/bin/python dict = {} dict["one"] = "This is one" dict[2] = "This is two" tinydict = {"name": "john","code":6734, "dept": "sales"} print dict["one"] # 输出键为"one" 的值 print dict[2] # 输出键为 2 的值 print tinydict # 输出完整的字典 print tinydict.keys() # 输出所有键 print tinydict.values() # 输出所有值
输出结果为:
This is one This is two {"dept": "sales", "code": 6734, "name": "john"} ["dept", "code", "name"] ["sales", 6734, "john"]
Python数据类型转换
有时候,我们需要对数据内置的类型进行转换,数据类型的转换,你只需要将数据类型作为函数名即可。
以下几个内置的函数可以执行数据类型之间的转换。这些函数返回一个新的对象,表示转换的值。
函数
描述
int(x [,base])
将x转换为一个整数
long(x [,base] )
将x转换为一个长整数
float(x)
将x转换到一个浮点数
complex(real [,imag])
创建一个复数
str(x)
将对象 x 转换为字符串
repr(x)
将对象 x 转换为表达式字符串
eval(str)
用来计算在字符串中的有效Python表达式,并返回一个对象
tuple(s)
将序列 s 转换为一个元组
list(s)
将序列 s 转换为一个列表
set(s)
转换为可变集合
dict(d)
创建一个字典。d 必须是一个序列 (key,value)元组。
frozenset(s)
转换为不可变集合
chr(x)
将一个整数转换为一个字符
unichr(x)
将一个整数转换为Unicode字符
ord(x)
将一个字符转换为它的整数值
hex(x)
将一个整数转换为一个十六进制字符串
oct(x)
将一个整数转换为一个八进制字符串

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python和C 在内存管理和控制方面的差异显着。 1.Python使用自动内存管理,基于引用计数和垃圾回收,简化了程序员的工作。 2.C 则要求手动管理内存,提供更多控制权但增加了复杂性和出错风险。选择哪种语言应基于项目需求和团队技术栈。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

选择Python还是C 取决于项目需求:1)Python适合快速开发、数据科学和脚本编写,因其简洁语法和丰富库;2)C 适用于需要高性能和底层控制的场景,如系统编程和游戏开发,因其编译型和手动内存管理。

Python在数据科学和机器学习中的应用广泛,主要依赖于其简洁性和强大的库生态系统。1)Pandas用于数据处理和分析,2)Numpy提供高效的数值计算,3)Scikit-learn用于机器学习模型构建和优化,这些库让Python成为数据科学和机器学习的理想工具。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

WebStorm Mac版
好用的JavaScript开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

SublimeText3 Linux新版
SublimeText3 Linux最新版

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。