首页 >后端开发 >Python教程 >python多线程

python多线程

高洛峰
高洛峰原创
2016-10-20 11:43:451226浏览

首先,说明一下多线程的应用场景:当python处理多个任务时,这些任务本质是异步的,需要有多个并发事务,各个事务的运行顺序可以是不确定的、随机的、不可预测的。计算密集型的任务可以顺序执行分隔成的多个子任务,也可以用多线程的方式处理。但I/O密集型的任务就不好以单线程方式处理了,如果不用多线程,只能用一个或多个计时器来处理实现。

      下面说一下进程与线程:进程(有时叫重量级进程),是程序的一次执行,正如我们在centos中,ps -aux | grep something 的时候,总有一个他自身产生的进程,也就是这个grep进程,每个进程有自己的地址空间、内存、数据栈、及其他记录其运行轨迹的辅助数据,因此各个进程也不能直接共享信息,只能用进程间通信(IPC)。

      线程(轻量级进程),与进程最大的区别是,所有的线程运行在同一个进程中,共享相同的运行环境,共享同一片数据空间。所以线程之间可以比进程之间更方便的共享数据以及相互通讯,并发执行完成事务。

      为了方便理解记忆进程与线程的关系,我们可以做一个类比:把cpu比作一个搬家公司,而这家搬家公司只有一辆车(进程)来供使用,开始,这家搬家公司很穷,只有一个员工(单线程),那么,这个搬家公司一天,最多只能搬5家,后来,老板赚到钱了,他没买车,而是多雇了n个员工(多线程),这样,每个员工会被安排每次只搬一家,然后就去休息,把车让出来,让其他人搬下一家,这看起来其实并没有提高多少效率,反而增加了成本是吧,这是因为GIL(Global Interpreter Lock) 全局解释器锁,保证了线程安全(保证数据被安全读取),即同时只能有一个线程在CPU上运行,这是python特有的机制,也就是说,即使你的运行环境具有双CPU,python虚拟机也只会使用一个cpu,也就是说GIL 直接导致 CPython 不能利用物理多核的性能加速运算。具体的详细解释(历史遗留问题,硬件发展太快)可以参考这篇博客:

      http://blog.sina.com.cn/s/blog_64ecfc2f0102uzzf.html

      在python核心编程中,作者极力建议我们不要使用thread模块,而是要使用threading模块,原因如下:

   1、当主线程退出时,所有其他线程没有被清除就退出了,thread模块无法保护所有子线程的安全退出。即,thread         模块不支持守护进程。

   2、thread模块的属性有可能会与threading出现冲突。

   3、低级别的thread模块的同步原语很少(实际只有一个,应该是sleep)。

一、thread模块 

 以下是不使用GIL和使用GIL的两个示例代码:

 1.不使用GIL的代码示例:

from time import sleep,ctime
import thread

def loop0():
    print 'start loop 0 at: ',ctime()
    sleep(4)
    print 'loop 0 done at: ',ctime()
def loop1():
    print 'start loop 1 at: ',ctime()
    sleep(2)
    print 'loop 1 done at: ',ctime()
def main():
    print 'start at: ',ctime()
    thread.start_new_thread(loop0,())
    thread.start_new_thread(loop1,())
    sleep(6)
    print 'all loop is done, ' ,ctime()

if __name__=='__main__':
    main()
 

输出结果:

start at:  Thu Jan 28 10:46:27 2016
start loop 0 at:   Thu Jan 28 10:46:27 2016

start loop 1 at:   Thu Jan 28 10:46:27 2016
loop 1 done at:  Thu Jan 28 10:46:29 2016
loop 0 done at:  Thu Jan 28 10:46:31 2016
all loop is done,  Thu Jan 28 10:46:33 2016

由以上输出可以看出,我们成功开启了两个线程,并且与主线程同步,在第2s时,loop1先完成,第4s时loop0完成,又过了2s,主线程完成结束。整个主线程经过了6s,loop0和loop1同步完成。

 

2、使用GIL的代码示例:

import thread
from time import sleep,ctime
loops = [4,2]
def loop(nloop,nsec,lock):
    print 'start loop',nloop,'at: ',ctime()
    sleep(nsec)
    print 'loop',nloop,'done at:',ctime()
    lock.release()
def main():
    print 'starting at:',ctime()
    locks = []
    nloops = range(len(loops))

    for i in nloops:
        lock = thread.allocate_lock()                          #创建锁的列表,存在locks中
        lock.acquire()                         
        locks.append(lock)                                      
    for i in nloops:
        thread.start_new_thread(loop,(i,loops[i],locks[i]))    #创建线程,参数为循环号,睡眠时间,锁
    for i in nloops:
        while locks[i].locked():                              #等待循环完成,解锁
            pass
    print 'all DONE at:',ctime()
if __name__ == '__main__':
    main()
 

以上输出如下:

starting at: Thu Jan 28 14:59:22 2016
start loop  0  at:   Thu Jan 28 14:59:22 2016

start loop  1  at:   Thu Jan 28 14:59:22 2016
loop 1 done at: Thu Jan 28 14:59:24 2016
loop 0 done at: Thu Jan 28 14:59:26 2016
all DONE at: Thu Jan 28 14:59:26 2016

历时4秒,这样效率得到提高,也比在主线程中用一个sleep()函数来计时更为合理。

 

二、threading模块

1、Thread类

在thread类中,可以用以下三种方法来创建线程:

(1)创建一个thread实例,传给它一个函数

(2)创建一个thread实例,传给它一个可调用的类对象

(3)从thread派生出一个子类,创建这个子类的对象

方法(1)

__author__ = 'dell'
import threading
from time import sleep,ctime
def loop0():
    print 'start loop 0 at:',ctime()
    sleep(4)
    print 'loop 0 done at:',ctime()
def loop1():
    print 'start loop 1 at:',ctime()
    sleep(2)
    print 'loop 1 done at:',ctime()
def main():
    print 'starting at:',ctime()
    threads = []
    t1 = threading.Thread(target=loop0,args=())          #创建线程
    threads.append(t1)
    t2 = threading.Thread(target=loop1,args=())
    threads.append(t2)
    for t in threads:
        t.setDaemon(True)<span style="white-space:pre">    </span>      #开启守护线程(一定要在start()前调用)
        t.start()<span style="white-space:pre">        </span>      #开始线程执行
    for t in threads:<span style="white-space:pre">                    </span>
        t.join()<span style="white-space:pre">        </span>      #将程序挂起阻塞,直到线程结束,如果给出数值,则最多阻塞timeout秒

if __name__ == &#39;__main__&#39;:
    main()
    print &#39;All DONE at:&#39;,ctime()

在这里,就不用像thread模块那样要管理那么多锁(分配、获取、释放、检查等)了,同时我也减少了循环的代码,直接自己编号循环了,得到输出如下:
 

starting at: Thu Jan 28 16:38:14 2016
start loop 0 at: Thu Jan 28 16:38:14 2016
start loop 1 at: Thu Jan 28 16:38:14 2016
loop 1 done at: Thu Jan 28 16:38:16 2016
loop 0 done at: Thu Jan 28 16:38:18 2016
All DONE at: Thu Jan 28 16:38:18 2016

结果相同,但是从代码的逻辑来看,要清晰的多了。其他两种在此就不贴出代码了。实例化一个Thread与调用thread.start_new_thread直接最大的区别就是新的线程不会立即开始执行,也就是说,在threading模块的Thread类中当我们实例化之后,再调用.start()函数后被统一执行,这使得我们的程序具有很好的同步特性。

下面是单线程与多线程的一个对比示例,分别以乘除完成两组运算,从而看出多线程对效率的提高

from time import ctime,sleep
import threading

def multi():
    num1 = 1
    print &#39;start mutiple at:&#39;,ctime()
    for i in range(1,10):
       num1 = i*num1
       sleep(0.2)
    print &#39;mutiple finished at:&#39;,ctime()
    return num1
def divide():
    num2 = 100
    print &#39;start division at:&#39;,ctime()
    for i in range(1,10):
        num2 = num2/i
        sleep(0.4)
    print &#39;division finished at:&#39;,ctime()
    return num2
def main():
    print &#39;---->single Thread&#39;
    x1 = multi()
    x2 = divide()
    print &#39;The sum is &#39;,sum([x1,x2]),&#39;\nfinished singe thread&#39;,ctime()

    print &#39;----->Multi Thread&#39;
    threads = []
    t1 = threading.Thread(target=multi,args=())
    threads.append(t1)
    t2 = threading.Thread(target=divide,args=())
    threads.append(t2)
    for t in threads:
        t.setDaemon(True)
        t.start()
    for t in threads:
        t.join()

if __name__ == &#39;__main__&#39;:
    main()

结果如下:

 

---->single Thread

start mutiple at: Thu Jan 28 21:41:18 2016

mutiple finished at: Thu Jan 28 21:41:20 2016

start division at: Thu Jan 28 21:41:20 2016

division finished at: Thu Jan 28 21:41:24 2016

The sum is  362880 

finished singe thread Thu Jan 28 21:41:24 2016

----->Multi Thread

start mutiple at: Thu Jan 28 21:41:24 2016

start division at: Thu Jan 28 21:41:24 2016

mutiple finished at: Thu Jan 28 21:41:26 2016

division finished at: Thu Jan 28 21:41:27 2016

The sum is : 362880


声明:
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn