Python的命名空间是Python程序猿必须了解的内容,对Python命名空间的学习,将使我们在本质上掌握一些Python中的琐碎的规则。
接下来我将分四部分揭示Python命名空间的本质:一、命名空间的定义;二、命名空间的查找顺序;三、命名空间的生命周期;四、通过locals()和globals() BIF访问命名空间
重点是第四部分,我们将在此部分观察命名空间的内容。
一、命名空间
Python使用叫做命名空间的东西来记录变量的轨迹。命名空间是一个 字典(dictionary) ,它的键就是变量名,它的值就是那些变量的值。
A namespace is a mapping from names to objects. Most namespaces are currently implemented as Python dictionaries。
在一个 Python 程序中的任何一个地方,都存在几个可用的命名空间。
1、每个函数都有着自已的命名空间,叫做局部命名空间,它记录了函数的变量,包括函数的参数和局部定义的变量。
2、每个模块拥有它自已的命名空间,叫做全局命名空间,它记录了模块的变量,包括函数、类、其它导入的模块、模块级的变量和常量。
3、还有就是内置命名空间,任何模块均可访问它,它存放着内置的函数和异常。
二、命名空间查找顺序
当一行代码要使用变量 x 的值时,Python 会到所有可用的名字空间去查找变量,按照如下顺序:
1、局部命名空间:特指当前函数或类的方法。如果函数定义了一个局部变量 x,或一个参数 x,Python 将使用它,然后停止搜索。
2、全局命名空间:特指当前的模块。如果模块定义了一个名为 x 的变量,函数或类,Python 将使用它然后停止搜索。
3、内置命名空间:对每个模块都是全局的。作为最后的尝试,Python 将假设 x 是内置函数或变量。
4、如果 Python 在这些名字空间找不到 x,它将放弃查找并引发一个 NameError 异常,如,NameError: name 'aa' is not defined。
嵌套函数的情况:
1、先在当前 (嵌套的或 lambda) 函数的命名空间中搜索
2、然后是在父函数的命名空间中搜索
3、接着是模块命名空间中搜索
4、最后在内置命名空间中搜索
示例:
info = "Adress : " def func_father(country): def func_son(area): city= "Shanghai " #此处的city变量,覆盖了父函数的city变量 print(info + country + city + area) city = " Beijing " #调用内部函数 func_son("ChaoYang "); func_father("China ")
输出:Adress : China Shanghai ChaoYang
以上示例中,info在全局命名空间中,country在父函数的命名空间中,city、area在自己函数的命名空间中
三、命名空间的生命周期
不同的命名空间在不同的时刻创建,有不同的生存期。
1、内置命名空间在 Python 解释器启动时创建,会一直保留,不被删除。
2、模块的全局命名空间在模块定义被读入时创建,通常模块命名空间也会一直保存到解释器退出。
3、当函数被调用时创建一个局部命名空间,当函数返回结果 或 抛出异常时,被删除。每一个递归调用的函数都拥有自己的命名空间。
Python 的一个特别之处在于其赋值操作总是在最里层的作用域。赋值不会复制数据——只是将命名绑定到对象。删除也是如此:"del y" 只是从局部作用域的命名空间中删除命名 y 。事实上,所有引入新命名的操作都作用于局部作用域。
示例:
i=1
def func2():
i=i+1
func2();
#错误:UnboundLocalError: local variable 'i' referenced before assignment
由于创建命名空间时,python会检查代码并填充局部命名空间。在python运行那行代码之前,就发现了对i的赋值,并把它添加到局部命名空间中。当函数执行时,python解释器认为i在局部命名空间中但没有值,所以会产生错误。
def func3():
y=123
del y
print(y)
func3()
#错误:UnboundLocalError: local variable 'y' referenced before assignment
#去掉"del y"语句后,运行正常
四、命名空间的访问
1、局部命名空间可以 locals() BIF来访问。
locals 返回一个名字/值对的 dictionary。这个 dictionary 的键是字符串形式的变量名字,dictionary 的值是变量的实际值。
示例:
def func1(i, str ):
x = 12345
print(locals())
func1(1 , "first")
输出:{'str': 'first', 'x': 12345, 'i': 1}
2、全局 (模块级别)命名空间可以通过 globals() BIF来访问。
示例:
'''Created on 2013-5-26''' import copy from copy import deepcopy gstr = "global string" def func1(i, info): x = 12345 print(locals()) func1(1 , "first") if __name__ == "__main__": print("the current scope's global variables:") dictionary=globals() print(dictionary)
输出:(我自己给人为的换行、更换了顺序,加颜色的语句下面重点说明)
{
'__name__': '__main__',
'__doc__': 'Created on 2013-5-26',
'__package__': None,
'__cached__': None,
'__file__': 'E:\\WorkspaceP\\Test1\\src\\base\\test1.py',
'__loader__': <_frozen_importlib.sourcefileloader object at>,
'copy':
'__builtins__':
'gstr': 'global string',
'dictionary': {...},
'func1':
'deepcopy':
}
总结
1、模块的名字空间不仅仅包含模块级的变量和常量,还包括所有在模块中定义的函数和类。除此以外,它还包括了任何被导入到模块中的东西。
2、我们看到,内置命名也同样被包含在一个模块中,它被称作 __builtin__。
3、回想一下 from module import 和 import module 之间的不同。
使用 import module,模块自身被导入,但是它保持着自已的名字空间,这就是为什么您需要使用模块名来访问它的函数或属性:module.function 的原因。
但是使用 from module import function,实际上是从另一个模块中将指定的函数和属性导入到您自己的名字空间,这就是为什么您可以直接访问它们却不需要引用它们所来源的模块。使用 globals 函数,您会真切地看到这一切的发生,见上面的红色输出语句。
3、 locals 与 globals 之间的一个重要的区别
locals 是只读的,globals 不是
示例:
def func1(i, info): x = 12345 print(locals()) locals()["x"]= 6789 print("x=",x) y=54321 func1(1 , "first") globals()["y"]= 9876 print( "y=",y)
输出:
{'i': 1, 'x': 12345, 'info': 'first'}
x= 12345
y= 9876
解释:
locals 实际上没有返回局部名字空间,它返回的是一个拷贝。所以对它进行改变对局部名字空间中的变量值并无影响。
globals 返回实际的全局名字空间,而不是一个拷贝。所以对 globals 所返回的 dictionary 的任何的改动都会直接影响到全局变量。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SublimeText3 Linux新版
SublimeText3 Linux最新版

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

记事本++7.3.1
好用且免费的代码编辑器