对List进行排序,Python提供了两个方法
方法1.用List的内建函数list.sort进行排序
list.sort(func=None, key=None, reverse=False)
Python实例:
>>> list = [2,5,8,9,3] >>> list [2,5,8,9,3] >>> list.sort() >>> list [2, 3, 5, 8, 9]
方法2.用序列类型函数sorted(list)进行排序(从2.4开始)
Python实例:
>>> list = [2,5,8,9,3] >>> list [2,5,8,9,3] >>> sorted(list) [2, 3, 5, 8, 9]
两种方法的区别:
sorted(list)返回一个对象,可以用作表达式。原来的list不变,生成一个新的排好序的list对象。
list.sort() 不会返回对象,改变原有的list。
其他sort的实例:
实例1:正向排序
>>>L = [2,3,1,4] >>>L.sort() >>>L >>>[1,2,3,4]
实例2:反向排序
>>>L = [2,3,1,4] >>>L.sort(reverse=True) >>>L >>>[4,3,2,1]
实例3:对第二个关键字排序
>>>L = [('b',6),('a',1),('c',3),('d',4)] >>>L.sort(lambda x,y:cmp(x[1],y[1])) >>>L >>>[('a', 1), ('c', 3), ('d', 4), ('b', 6)]
实例4: 对第二个关键字排序
>>>L = [('b',6),('a',1),('c',3),('d',4)] >>>L.sort(key=lambda x:x[1]) >>>L >>>[('a', 1), ('c', 3), ('d', 4), ('b', 6)]
实例5: 对第二个关键字排序
>>>L = [('b',2),('a',1),('c',3),('d',4)] >>>import operator >>>L.sort(key=operator.itemgetter(1)) >>>L >>>[('a', 1), ('b', 2), ('c', 3), ('d', 4)]
实例6:(DSU方法:Decorate-Sort-Undercorate)
>>>L = [('b',2),('a',1),('c',3),('d',4)] >>>A = [(x[1],i,x) for i,x in enumerate(L)] #i can confirm the stable sort >>>A.sort() >>>L = [s[2] for s in A] >>>L >>>[('a', 1), ('b', 2), ('c', 3), ('d', 4)]
以上给出了6中对List排序的方法,其中实例3.4.5.6能起到对以List item中的某一项
为比较关键字进行排序.
效率比较:
cmp
通过实验比较,方法3比方法6要慢,方法6比方法4要慢,方法4和方法5基本相当
多关键字比较排序:
实例7:
>>>L = [('d',2),('a',4),('b',3),('c',2)] >>> L.sort(key=lambda x:x[1]) >>> L >>>[('d', 2), ('c', 2), ('b', 3), ('a', 4)]
我们看到,此时排序过的L是仅仅按照第二个关键字来排的,
如果我们想用第二个关键字排过序后再用第一个关键字进行排序呢?有两种方法
实例8:
>>> L = [('d',2),('a',4),('b',3),('c',2)] >>> L.sort(key=lambda x:(x[1],x[0])) >>> L >>>[('c', 2), ('d', 2), ('b', 3), ('a', 4)]
实例9:
>>> L = [('d',2),('a',4),('b',3),('c',2)] >>> L.sort(key=operator.itemgetter(1,0)) >>> L >>>[('c', 2), ('d', 2), ('b', 3), ('a', 4)]
为什么实例8能够工作呢?原因在于tuple是的比较从左到右比较的,比较完第一个,如果
相等,比较第二个

使用NumPy创建多维数组可以通过以下步骤实现:1)使用numpy.array()函数创建数组,例如np.array([[1,2,3],[4,5,6]])创建2D数组;2)使用np.zeros(),np.ones(),np.random.random()等函数创建特定值填充的数组;3)理解数组的shape和size属性,确保子数组长度一致,避免错误;4)使用np.reshape()函数改变数组形状;5)注意内存使用,确保代码清晰高效。

播放innumpyisamethodtoperformoperationsonArraySofDifferentsHapesbyAutapityallate AligningThem.itSimplifififiesCode,增强可读性,和Boostsperformance.Shere'shore'showitworks:1)较小的ArraySaraySaraysAraySaraySaraySaraySarePaddedDedWiteWithOnestOmatchDimentions.2)

forpythondataTastorage,choselistsforflexibilityWithMixedDatatypes,array.ArrayFormeMory-effficityHomogeneousnumericalData,andnumpyArraysForAdvancedNumericalComputing.listsareversareversareversareversArversatilebutlessEbutlesseftlesseftlesseftlessforefforefforefforefforefforefforefforefforefforlargenumerdataSets; arrayoffray.array.array.array.array.array.ersersamiddreddregro

Pythonlistsarebetterthanarraysformanagingdiversedatatypes.1)Listscanholdelementsofdifferenttypes,2)theyaredynamic,allowingeasyadditionsandremovals,3)theyofferintuitiveoperationslikeslicing,but4)theyarelessmemory-efficientandslowerforlargedatasets.

toAccesselementsInapyThonArray,useIndIndexing:my_array [2] accessEsthethEthErlement,returning.3.pythonosezero opitedEndexing.1)usepositiveandnegativeIndexing:my_list [0] fortefirstElment,fortefirstelement,my_list,my_list [-1] fornelast.2] forselast.2)

文章讨论了由于语法歧义而导致的Python中元组理解的不可能。建议使用tuple()与发电机表达式使用tuple()有效地创建元组。(159个字符)

本文解释了Python中的模块和包装,它们的差异和用法。模块是单个文件,而软件包是带有__init__.py文件的目录,在层次上组织相关模块。

文章讨论了Python中的Docstrings,其用法和收益。主要问题:Docstrings对于代码文档和可访问性的重要性。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

Dreamweaver Mac版
视觉化网页开发工具

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

SublimeText3 Linux新版
SublimeText3 Linux最新版

Atom编辑器mac版下载
最流行的的开源编辑器

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具