搜索
首页后端开发Python教程PyPy 和 CPython 的性能比较测试

PyPy 和 CPython 的性能比较测试

Oct 18, 2016 pm 01:33 PM
cpythonpypypython性能测试

最近我在维基百科上完成了一些数据挖掘方面的任务。它由这些部分组成:

解析enwiki-pages-articles.xml的维基百科转储;

把类别和页存储到MongoDB里面;

对类别名称进行重新分门别类。

我对CPython 2.7.3和PyPy 2b的实际任务性能进行了测试。我使用的库是:

redis 2.7.2

pymongo 2.4.2

此外CPython是由以下库支持的:

hiredis

pymongo c-extensions

测试主要包含数据库解析,所以我没预料到会从PyPy得到多大好处(何况CPython的数据库驱动是C写的)。

下面我会描述一些有趣的结果。


抽取维基页名


我需要在所有维基百科的类别中建立维基页名到page.id的联接并存储重新分配好的它们。最简单的解决方案应该是导入enwiki-page.sql(定义了一个RDB表)到MySQL里面,然后传输数据、进行重分配。但我不想增加MySQL需求(有骨气!XD)所以我用纯Python写了一个简单的SQL插入语句解析器,然后直接从enwiki-page.sql导入数据,进行重分配。

这个任务对CPU依赖更大,所以我再次看好PyPy。

/ time

PyPy 169.00s 用户态 8.52s 系统态 90% CPU

CPython 1287.13s 用户态 8.10s 系统态 96% CPU

我也给page.id->类别做了类似的联接(我笔记本的内存太小了,不能保存供我测试的信息了)。


从enwiki.xml中筛选类别


为了方便工作,我需要从enwiki-pages-articles.xml中过滤类别,并将它们存储相同的XML格式的类别。因此我选用了SAX解析器,在PyPy和CPython中都适用的包装器解析。对外的原生编译包(同事在PyPy和CPython 中) 。

代码非常简单:

class WikiCategoryHandler(handler.ContentHandler):
    """Class which detecs category pages and stores them separately
    """
    ignored = set(('contributor', 'comment', 'meta'))
  
    def __init__(self, f_out):
        handler.ContentHandler.__init__(self)
        self.f_out = f_out
        self.curr_page = None
        self.curr_tag = ''
        self.curr_elem = Element('root', {})
        self.root = self.curr_elem
        self.stack = Stack()
        self.stack.push(self.curr_elem)
        self.skip = 0
  
    def startElement(self, name, attrs):
        if self.skip>0 or name in self.ignored:
            self.skip += 1
            return
        self.curr_tag = name
        elem = Element(name, attrs)
        if name == 'page':
            elem.ns = -1
            self.curr_page = elem
        else:   # we don't want to keep old pages in memory
            self.curr_elem.append(elem)
        self.stack.push(elem)
        self.curr_elem = elem
  
    def endElement(self, name):
        if self.skip>0:
            self.skip -= 1
            return
        if name == 'page':
            self.task()
            self.curr_page = None
        self.stack.pop()
        self.curr_elem = self.stack.top()
        self.curr_tag = self.curr_elem.tag
  
    def characters(self, content):
        if content.isspace(): return
        if self.skip == 0:
            self.curr_elem.append(TextElement(content))
            if self.curr_tag == 'ns':
                self.curr_page.ns = int(content)
  
    def startDocument(self):
        self.f_out.write("<root>\n")
  
    def endDocument(self):
        self.f_out.write("<\root>\n")
        print("FINISH PROCESSING WIKIPEDIA")
  
    def task(self):
        if self.curr_page.ns == 14:
            self.f_out.write(self.curr_page.render())
  
  
class Element(object):
    def __init__(self, tag, attrs):
        self.tag = tag
        self.attrs = attrs
        self.childrens = []
        self.append = self.childrens.append
  
    def __repr__(self):
        return "Element {}".format(self.tag)
  
    def render(self, margin=0):
        if not self.childrens:
            return u"{0}<{1}{2} />".format(
                " "*margin,
                self.tag,
                "".join([&#39; {}="{}"&#39;.format(k,v) for k,v in {}.iteritems()]))
        if isinstance(self.childrens[0], TextElement) and len(self.childrens)==1:
            return u"{0}<{1}{2}>{3}</{1}>".format(
                " "*margin,
                self.tag,
                "".join([u&#39; {}="{}"&#39;.format(k,v) for k,v in {}.iteritems()]),
                self.childrens[0].render())
  
        return u"{0}<{1}{2}>\n{3}\n{0}</{1}>".format(
            " "*margin,
            self.tag,
            "".join([u&#39; {}="{}"&#39;.format(k,v) for k,v in {}.iteritems()]),
            "\n".join((c.render(margin+2) for c in self.childrens)))
  
class TextElement(object):
    def __init__(self, content):
        self.content = content
  
    def __repr__(self):
        return "TextElement" def render(self, margin=0):
        return self.content

Element和TextElement元素包换tag和body信息,同时提供了一个方法来渲染它。

下面是我想要的PyPy和CPython比较结果。

/ time

PyPy 2169.90s

CPython 4494.69s

我很对PyPy的结果很吃惊。

计算有趣的类别集合


我曾经想要计算一个有趣的类别集合——在我的一个应用背景下,以Computing类别衍生的一些类别为开始进行计算。为此我需要构建一个提供类的类图——子类关系图。

结构类——子类关系图


这个任务使用MongoDB作为数据来源,并对结构进行重新分配。算法是:

for each category.id in redis_categories (it holds *category.id -> category title mapping*) do:
    title = redis_categories.get(category.id)
    parent_categories = mongodb get categories for title
    for each parent_cat in parent categories do:
        redis_tree.sadd(parent_cat, title) # add to parent_cat set title

抱歉写这样的伪码,但我想这样看起来更加紧凑些。

所以说这个任务仅把数据从一个数据库拷贝到另一个。这里的结果是MongoDB预热完毕后得出的(不预热的话数据会有偏差——这个Python任务只耗费约10%的CPU)。计时如下:

/ time

PyPy 175.11s 用户态 66.11s 系统态 64% CPU

CPython 457.92s 用户态 72.86s 系统态 81% CPU


遍历redis_tree(再分配过的树)


如果我们有redis_tree数据库,仅剩的问题就是遍历Computing类别下所有可实现的结点了。为避免循环遍历,我们需要记录已访问过的结点。自从我想测试Python的数据库性能,我就用再分配集合列来解决这个问题。

/ time

PyPy 14.79s 用户态 6.22s 系统态 69% CPU 30.322 总计

CPython 44.20s 用户态 13.86s 系统态 71% CPU 1:20.91 总计

说实话,这个任务也需要构建一些tabu list(禁止列表)——来避免进入不需要的类别。但那不是本文的重点。


结论

进行的测试仅仅是我最终工作的一个简介。它需要一个知识体系,一个我从抽取维基百科中适当的内容中得到的知识体系。

PyPy相比CPython,在我这个简单的数据库操作中,提高了2-3倍的性能。(我这里没有算上SQL解析器,大约8倍)

多亏了PyPy,我的工作更加愉悦了——我没有改写算法就使Python有了效率,而且PyPy没有像CPython一样把我的CPU弄挂了,以至于一段时间内我没法正常的使用我的笔记本了(看看CPU时间占的百分比吧)。

任务几乎都是数据库操作,而CPython有一些加速的乱七八糟的C语言模块。PyPy不使用这些,但结果却更快!

我的全部工作需要大量的周期,所以我真高兴能用PyPy。


声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python与C:学习曲线和易用性Python与C:学习曲线和易用性Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python vs. C:内存管理和控制Python vs. C:内存管理和控制Apr 19, 2025 am 12:17 AM

Python和C 在内存管理和控制方面的差异显着。 1.Python使用自动内存管理,基于引用计数和垃圾回收,简化了程序员的工作。 2.C 则要求手动管理内存,提供更多控制权但增加了复杂性和出错风险。选择哪种语言应基于项目需求和团队技术栈。

科学计算的Python:详细的外观科学计算的Python:详细的外观Apr 19, 2025 am 12:15 AM

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python和C:找到合适的工具Python和C:找到合适的工具Apr 19, 2025 am 12:04 AM

选择Python还是C 取决于项目需求:1)Python适合快速开发、数据科学和脚本编写,因其简洁语法和丰富库;2)C 适用于需要高性能和底层控制的场景,如系统编程和游戏开发,因其编译型和手动内存管理。

数据科学和机器学习的Python数据科学和机器学习的PythonApr 19, 2025 am 12:02 AM

Python在数据科学和机器学习中的应用广泛,主要依赖于其简洁性和强大的库生态系统。1)Pandas用于数据处理和分析,2)Numpy提供高效的数值计算,3)Scikit-learn用于机器学习模型构建和优化,这些库让Python成为数据科学和机器学习的理想工具。

学习Python:2小时的每日学习是否足够?学习Python:2小时的每日学习是否足够?Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Web开发的Python:关键应用程序Web开发的Python:关键应用程序Apr 18, 2025 am 12:20 AM

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

Python vs.C:探索性能和效率Python vs.C:探索性能和效率Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热工具

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。