搜索
首页后端开发Python教程Python科学计算 - Numpy快速入门

Numpy是什么?

Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy、matplotlib一起使用。它可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix))。


NumPy(Numeric Python)提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大型金融公司使用,以及核心的科学计算组织如:Lawrence Livermore,NASA用其处理一些本来使用C++,Fortran或Matlab等所做的任务。


多维数组


多维数组的类型是:numpy.ndarray


使用numpy.array方法


以list或tuple变量为参数产生一维数组:

>>> print(np.array([1,2,3,4]))
[1 2 3 4]
>>> print(np.array((1.2,2,3,4)))
[ 1.2  2.   3.   4. ]
>>> print type(np.array((1.2,2,3,4)))
<type &#39;numpy.ndarray&#39;>

   


以list或tuple变量为元素产生二维数组:

>>> print(np.array([[1,2],[3,4]]))
[[1 2]
 [3 4]]


指定数据类型

例如numpy.int32, numpy.int16, and numpy.float64等:

>>> print np.array((1.2,2,3,4), dtype=np.int32)
[1 2 3 4]

使用numpy.arange方法

>>> print(np.arange(15))
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14]
>>> print type(np.arange(15))
<type &#39;numpy.ndarray&#39;>
>>> print np.arange(15).reshape(3,5)
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]]
>>> print type(np.arange(15).reshape(3,5))
<type &#39;numpy.ndarray&#39;>

   

使用numpy.linspace方法

例如,在从1到3中产生9个数:

>>> print(np.linspace(1,3,10))
[ 1.          1.22222222  1.44444444  1.66666667  1.88888889  2.11111111
  2.33333333  2.55555556  2.77777778  3.        ]

   

构造特定的矩阵

使用numpy.zeros,numpy.ones,numpy.eye

可以构造特定的矩阵

>>> print(np.zeros((3,4)))
[[ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]]
>>> print(np.ones((4,3)))
[[ 1.  1.  1.]
 [ 1.  1.  1.]
 [ 1.  1.  1.]
 [ 1.  1.  1.]]
>>> print(np.eye(4))
[[ 1.  0.  0.  0.]
 [ 0.  1.  0.  0.]
 [ 0.  0.  1.  0.]
 [ 0.  0.  0.  1.]]

创建一个三维数组:

>>> print(np.ones((3,3,3)))
[[[ 1.  1.  1.]
  [ 1.  1.  1.]
  [ 1.  1.  1.]]
 [[ 1.  1.  1.]
  [ 1.  1.  1.]
  [ 1.  1.  1.]]
 [[ 1.  1.  1.]
  [ 1.  1.  1.]
  [ 1.  1.  1.]]]

   

获取数组的属性

>>> a = np.zeros((2,3,2))
>>> print(a.ndim)   #数组的维数
3
>>> print(a.shape)  #数组每一维的大小
(2, 3, 2)
>>> print(a.size)   #数组的元素数
12
>>> print(a.dtype)  #元素类型
float64
>>> print(a.itemsize)  #每个元素所占的字节数
8

   

数组索引,切片,赋值

>>>a = np.array( [[2,3,4],[5,6,7]] )
>>> print(a)
[[2 3 4]
 [5 6 7]]
>>> print(a[1,2]) #index从0开始
7
>>> print a[1,:]
[5 6 7]
>>> print(a[1,1:2])
[6]
>>> a[1,:] = [8,9,10] #直接赋值
>>> print(a)
[[ 2  3  4]
 [ 8  9 10]]

   

使用for操作元素

>>> for x in np.linspace(1,3,3):
...     print(x)
...
1.0
2.0
3.0

   

基本的数组运算

先构造数组a、b:

>>> a = np.ones((2,2))
>>> b = np.eye(2)
>>> print(a)
[[ 1.  1.]
 [ 1.  1.]]
>>> print(b)
[[ 1.  0.]
 [ 0.  1.]]

   

数组的加减乘除

>>> print(a > 2)
[[False False]
 [False False]]
>>> print(a+b)
[[ 2.  1.]
 [ 1.  2.]]
>>> print(a-b)
[[ 0.  1.]
 [ 1.  0.]]
>>> print(b*2)
[[ 2.  0.]
 [ 0.  2.]]
>>> print((a*2)*(b*2))
[[ 4.  0.]
 [ 0.  4.]]
>>> print(b/(a*2))
[[ 0.5  0. ]
 [ 0.   0.5]]
>>> print((b*2)**4)
[[ 16.  0]
 [ 0  16.]]

使用数组对象自带的方法

>>> a.sum() #a的元素个数
4.0
>>> a.sum(axis=0)   #计算每一列(二维数组中类似于矩阵的列)的和
array([ 2.,  2.])
>>> a.min()
1.0
>>> a.max()
1.0
使用numpy下的方法
>>> np.sin(a)
array([[ 0.84147098,  0.84147098],
       [ 0.84147098,  0.84147098]])
>>> np.max(a)
1.0
>>> np.floor(a)
array([[ 1.,  1.],
       [ 1.,  1.]])
>>> np.exp(a)
array([[ 2.71828183,  2.71828183],
       [ 2.71828183,  2.71828183]])
>>> np.dot(a,a)   ##矩阵乘法
array([[ 2.,  2.],
       [ 2.,  2.]])

   

合并数组

使用numpy下的vstack和hstack函数:

>>> a = np.ones((2,2))
>>> b = np.eye(2)
>>> print(np.vstack((a,b)))
#顾名思义 v--vertical  垂直
[[ 1.  1.]
 [ 1.  1.]
 [ 1.  0.]
 [ 0.  1.]]
>>> print(np.hstack((a,b)))
#顾名思义 h--horizonal 水平
[[ 1.  1.  1.  0.]
 [ 1.  1.  0.  1.]]

   

看一下这两个函数有没有涉及到浅拷贝这种问题:

>>> c = np.hstack((a,b))
>>> print c
[[ 1.  1.  1.  0.]
 [ 1.  1.  0.  1.]]
>>> a[1,1] = 5
>>> b[1,1] = 5
>>> print c
[[ 1.  1.  1.  0.]
 [ 1.  1.  0.  1.]]

   

可以看到,a、b中元素的改变并未影响c。


深拷贝数组

数组对象自带了浅拷贝和深拷贝的方法,但是一般用深拷贝多一些:

>>> a = np.ones((2,2))
>>> b = a
>>> print(b is a)
True
>>> c = a.copy()  #深拷贝
>>> c is a
False

   

基本的矩阵运算

转置:

>>> a = np.array([[1,0],[2,3]])
>>> print(a)
[[1 0]
 [2 3]]
>>> print(a.transpose())
[[1 2]
 [0 3]]

   

numpy.linalg关于矩阵运算的方法

>>> import numpy.linalg as nplg1

特征值、特征向量:

>>> print nplg.eig(a)
(array([ 3.,  1.]), array([[ 0.        ,  0.70710678],
       [ 1.        , -0.70710678]]))

   

矩阵对象

numpy模块中的矩阵对象为numpy.matrix,包括矩阵数据的处理,矩阵的计算,以及基本的统计功能,转置,可逆性等等,包括对复数的处理,均在matrix对象中。


class numpy.matrix(data,dtype,copy):


返回一个矩阵,其中data为ndarray对象或者字符形式;


dtype:为data的type;


copy:为bool类型。

>>> a = np.matrix(&#39;1 2 7; 3 4 8; 5 6 9&#39;)
>>> a             #矩阵的换行必须是用分号(;)隔开,内部数据必须为字符串形式(‘ ’),矩
matrix([[1, 2, 7],       #阵的元素之间必须以空格隔开。
[3, 4, 8],
[5, 6, 9]])
>>> b=np.array([[1,5],[3,2]])
>>> x=np.matrix(b)   #矩阵中的data可以为数组对象。
>>> x
matrix([[1, 5],
[3, 2]])

   

矩阵对象的属性

matrix.T transpose

:返回矩阵的转置矩阵


matrix.H hermitian (conjugate) transpose

:返回复数矩阵的共轭元素矩阵


matrix.I inverse

:返回矩阵的逆矩阵


matrix.A base array

:返回矩阵基于的数组


矩阵对象的方法


all([axis, out]) :沿给定的轴判断矩阵所有元素是否为真(非0即为真)


any([axis, out]) :沿给定轴的方向判断矩阵元素是否为真,只要一个元素为真则为真。


argmax([axis, out]) :沿给定轴的方向返回最大元素的索引(最大元素的位置).


argmin([axis, out]): 沿给定轴的方向返回最小元素的索引(最小元素的位置)


argsort([axis, kind, order]) :返回排序后的索引矩阵


astype(dtype[, order, casting, subok, copy]):将该矩阵数据复制,且数据类型为指定的数据类型


byteswap(inplace) Swap the bytes of the array elements


choose(choices[, out, mode]) :根据给定的索引得到一个新的数据矩阵(索引从choices给定)


clip(a_min, a_max[, out]) :返回新的矩阵,比给定元素大的元素为a_max,小的为a_min


compress(condition[, axis, out]) :返回满足条件的矩阵


conj() :返回复数的共轭复数


conjugate() :返回所有复数的共轭复数元素


copy([order]) :复制一个矩阵并赋给另外一个对象,b=a.copy()


cumprod([axis, dtype, out]) :返回沿指定轴的元素累积矩阵


cumsum([axis, dtype, out]) :返回沿指定轴的元素累积和矩阵


diagonal([offset, axis1, axis2]) :返回矩阵中对角线的数据


dot(b[, out]) :两个矩阵的点乘


dump(file) :将矩阵存储为指定文件,可以通过pickle.loads()或者numpy.loads()如:a.dump(‘d:\a.txt’)


dumps() :将矩阵的数据转存为字符串.


fill(value) :将矩阵中的所有元素填充为指定的value


flatten([order]) :将矩阵转化为一个一维的形式,但是还是matrix对象


getA() :返回自己,但是作为ndarray返回


getA1():返回一个扁平(一维)的数组(ndarray)


getH() :返回自身的共轭复数转置矩阵


getI() :返回本身的逆矩阵


getT() :返回本身的转置矩阵


max([axis, out]) :返回指定轴的最大值


mean([axis, dtype, out]) :沿给定轴方向,返回其均值


min([axis, out]) :返回指定轴的最小值


nonzero() :返回非零元素的索引矩阵


prod([axis, dtype, out]) :返回指定轴方型上,矩阵元素的乘积.


ptp([axis, out]) :返回指定轴方向的最大值减去最小值.


put(indices, values[, mode]) :用给定的value替换矩阵本身给定索引(indices)位置的值


ravel([order]) :返回一个数组,该数组是一维数组或平数组


repeat(repeats[, axis]) :重复矩阵中的元素,可以沿指定轴方向重复矩阵元素,repeats为重复次数


reshape(shape[, order]) :改变矩阵的大小,如:reshape([2,3])


resize(new_shape[, refcheck]) :改变该数据的尺寸大小


round([decimals, out]) :返回指定精度后的矩阵,指定的位数采用四舍五入,若为1,则保留一位小数


searchsorted(v[, side, sorter]) :搜索V在矩阵中的索引位置


sort([axis, kind, order]) :对矩阵进行排序或者按轴的方向进行排序


squeeze([axis]) :移除长度为1的轴


std([axis, dtype, out, ddof]) :沿指定轴的方向,返回元素的标准差.


sum([axis, dtype, out]) :沿指定轴的方向,返回其元素的总和


swapaxes(axis1, axis2):交换两个轴方向上的数据.


take(indices[, axis, out, mode]) :提取指定索引位置的数据,并以一维数组或者矩阵返回(主要取决axis)


tofile(fid[, sep, format]) :将矩阵中的数据以二进制写入到文件


tolist() :将矩阵转化为列表形式


tostring([order]):将矩阵转化为python的字符串.


trace([offset, axis1, axis2, dtype, out]):返回对角线元素之和


transpose(*axes) :返回矩阵的转置矩阵,不改变原有矩阵


var([axis, dtype, out, ddof]) :沿指定轴方向,返回矩阵元素的方差


view([dtype, type]) :生成一个相同数据,但是类型为指定新类型的矩阵。


举例

>>> a = np.asmatrix(&#39;0 2 7; 3 4 8; 5 0 9&#39;)
>>> a.all()
False
>>> a.all(axis=0)
matrix([[False, False,  True]], dtype=bool)
>>> a.all(axis=1)
matrix([[False],
[ True],
[False]], dtype=bool)

   

Astype方法

>>> a.astype(float)
matrix([[ 12.,   3.,   5.],
[ 32.,  23.,   9.],
[ 10., -14.,  78.]])

   

Argsort方法

>>> a=np.matrix(&#39;12 3 5; 32 23 9; 10 -14 78&#39;)
>>> a.argsort()
matrix([[1, 2, 0],
[2, 1, 0],
[1, 0, 2]])

   

Clip方法

>>> a
matrix([[ 12,   3,   5],
[ 32,  23,   9],
[ 10, -14,  78]])
>>> a.clip(12,32)
matrix([[12, 12, 12],
[32, 23, 12],
[12, 12, 32]])

   


Cumprod方法

 
>>> a.cumprod(axis=1)
matrix([[    12,     36,    180],
[    32,    736,   6624],
[    10,   -140, -10920]])

   

Cumsum方法

>>> a.cumsum(axis=1)
matrix([[12, 15, 20],
[32, 55, 64],
[10, -4, 74]])

   


Tolist方法

>>> b.tolist()
[[12, 3, 5], [32, 23, 9], [10, -14, 78]]

Tofile方法

>>> b.tofile(&#39;d:\\b.txt&#39;)

   

compress()方法

>>> from numpy import *

>>> a = array([10, 20, 30, 40])
>>> condition = (a > 15) & (a < 35)
>>> condition
array([False, True, True, False], dtype=bool)
>>> a.compress(condition)
array([20, 30])
>>> a[condition]                                      # same effect
array([20, 30])
>>> compress(a >= 30, a)                              # this form a
so exists
array([30, 40])
>>> b = array([[10,20,30],[40,50,60]])
>>> b.compress(b.ravel() >= 22)
array([30, 40, 50, 60])
>>> x = array([3,1,2])
>>> y = array([50, 101])
>>> b.compress(x >= 2, axis=1)                       # illustrates 
the use of the axis keyword
array([[10, 30],
[40, 60]])
>>> b.compress(y >= 100, axis=0)
array([[40, 50, 60]])

   


声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python和时间:充分利用您的学习时间Python和时间:充分利用您的学习时间Apr 14, 2025 am 12:02 AM

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python:游戏,Guis等Python:游戏,Guis等Apr 13, 2025 am 12:14 AM

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python vs.C:申请和用例Python vs.C:申请和用例Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时的Python计划:一种现实的方法2小时的Python计划:一种现实的方法Apr 11, 2025 am 12:04 AM

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python:探索其主要应用程序Python:探索其主要应用程序Apr 10, 2025 am 09:41 AM

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

您可以在2小时内学到多少python?您可以在2小时内学到多少python?Apr 09, 2025 pm 04:33 PM

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

如何在10小时内通过项目和问题驱动的方式教计算机小白编程基础?如何在10小时内通过项目和问题驱动的方式教计算机小白编程基础?Apr 02, 2025 am 07:18 AM

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

如何在使用 Fiddler Everywhere 进行中间人读取时避免被浏览器检测到?如何在使用 Fiddler Everywhere 进行中间人读取时避免被浏览器检测到?Apr 02, 2025 am 07:15 AM

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
4 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
4 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
4 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
1 个月前By尊渡假赌尊渡假赌尊渡假赌

热工具

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。