搜索
首页后端开发Python教程开发中常遇到的Python陷阱和注意点

最近使用Python的过程中遇到了一些坑,例如用datetime.datetime.now()这个可变对象作为函数的默认参数,模块循环依赖等等。

在此记录一下,方便以后查询和补充。

避免可变对象作为默认参数

在使用函数的过程中,经常会涉及默认参数。在Python中,当使用可变对象作为默认参数的时候,就可能产生非预期的结果。

下面看一个例子:

def append_item(a = 1, b = []):
    b.append(a)
    print b
     
append_item(a=1)
append_item(a=3)
append_item(a=5)

结果为:

[1]
[1, 3]
[1, 3, 5]

从结果中可以看到,当后面两次调用append_item函数的时候,函数参数b并没有被初始化为[],而是保持了前面函数调用的值。

之所以得到这个结果,是因为在Python中,一个函数参数的默认值,仅仅在该函数定义的时候,被初始化一次。

下面看一个例子证明Python的这个特性:

class Test(object):  
    def __init__(self):  
        print("Init Test")  
           
def arg_init(a, b = Test()):  
    print(a)  
arg_init(1)  
arg_init(3)  
arg_init(5)

结果为:

Init Test
1
3
5

从这个例子的结果就可以看到,Test类仅仅被实例化了一次,也就是说默认参数跟函数调用次数无关,仅仅在函数定义的时候被初始化一次。

可变默认参数的正确使用

对于可变的默认参数,我们可以使用下面的模式来避免上面的非预期结果:

def append_item(a = 1, b = None):
    if b is None:
        b = []
    b.append(a)
    print b
     
append_item(a=1)
append_item(a=3)
append_item(a=5)

结果为:

[1]
[3]
[5]

Python中的作用域

Python的作用域解析顺序为Local、Enclosing、Global、Built-in,也就是说Python解释器会根据这个顺序解析变量。


看一个简单的例子:

global_var = 0
def outer_func():
    outer_var = 1
     
    def inner_func():
        inner_var = 2
         
        print "global_var is :", global_var
        print "outer_var is :", outer_var
        print "inner_var is :", inner_var
         
    inner_func()
     
outer_func()


结果为:

global_var is : 0
outer_var is : 1
inner_var is : 2

在Python中,关于作用域有一点需要注意的是,在一个作用域里面给一个变量赋值的时候,Python会认为这个变量是当前作用域的本地变量。


对于这一点也是比较容易理解的,对于下面代码var_func中给num变量进行了赋值,所以此处的num就是var_func作用域的本地变量。

num = 0
def var_func():
    num = 1
    print "num is :", num
     
var_func()

问题一

但是,当我们通过下面的方式使用变量的时候,就会产生问题了:

num = 0
def var_func():
    print "num is :", num
    num = 1
     
var_func()

结果如下:

UnboundLocalError: local variable 'num' referenced before assignment

之所以产生这个错误,就是因为我们在var_func中给num变量进行了赋值,所以Python解释器会认为num是var_func作用域的本地变量,但是当代码执行到print "num is :", num语句的时候,num还是未定义。


问题二

上面的错误还是比较明显的,还有一种比较隐蔽的错误形式如下:

li = [1, 2, 3]
def foo():
    li.append(4)
    print li
foo()
def bar():
    li +=[5]
    print li
bar()

代码的结果为:

[1, 2, 3, 4]
UnboundLocalError: local variable 'li' referenced before assignment

在foo函数中,根据Python的作用域解析顺序,该函数中使用了全局的li变量;但是在bar函数中,对li变量进行了赋值,所以li会被当作bar作用域中的变量。


对于bar函数的这个问题,可以通过global关键字。

li = [1, 2, 3]
def foo():
    li.append(4)
    print li
     
foo()
def bar():
    global li
    li +=[5]
    print li
     
bar()

类属性隐藏

在Python中,有类属性和实例属性。类属性是属于类本身的,被所有的类实例共享。

类属性可以通过类名访问和修改,也可以通过类实例进行访问和修改。但是,当实例定义了跟类同名的属性后,类属性就被隐藏了。


看下面这个例子:

class Student(object):
    books = ["Python", "JavaScript", "CSS"]
    def __init__(self, name, age):
        self.name = name
        self.age = age
    pass
     
wilber = Student("Wilber", 27)
print "%s is %d years old" %(wilber.name, wilber.age)
print Student.books
print wilber.books
wilber.books = ["HTML", "AngularJS"]
print Student.books
print wilber.books
del wilber.books
print Student.books
print wilber.books

代码的结果如下,起初wilber实例可以直接访问类的books属性,但是当实例wilber定义了名称为books的实例属性之后,wilber实例的books属性就“隐藏”了类的books属性;当删除了wilber实例的books属性之后,wilber.books就又对应类的books属性了。

Wilber is 27 years old
['Python', 'JavaScript', 'CSS']
['Python', 'JavaScript', 'CSS']
['Python', 'JavaScript', 'CSS']
['HTML', 'AngularJS']
['Python', 'JavaScript', 'CSS']
['Python', 'JavaScript', 'CSS']

当在Python值使用继承的时候,也要注意类属性的隐藏。对于一个类,可以通过类的__dict__属性来查看所有的类属性。


当通过类名来访问一个类属性的时候,会首先查找类的__dict__属性,如果没有找到类属性,就会继续查找父类。但是,如果子类定义了跟父类同名的类属性后,子类的类属性就会隐藏父类的类属性。


看一个例子:

class A(object):
    count = 1
     
class B(A):
    pass    
     
class C(A):
    pass        
     
print A.count, B.count, C.count      
B.count = 2
print A.count, B.count, C.count      
A.count = 3
print A.count, B.count, C.count     
print B.__dict__
print C.__dict__

结果如下,当类B定义了count这个类属性之后,就会隐藏父类的count属性:

1 1 1
1 2 1
3 2 3
{'count': 2, '__module__': '__main__', '__doc__': None}
{'__module__': '__main__', '__doc__': None}

tuple是“可变的”

在Python中,tuple是不可变对象,但是这里的不可变指的是tuple这个容器总的元素不可变(确切的说是元素的id),但是元素的值是可以改变的。

tpl = (1, 2, 3, [4, 5, 6])
print id(tpl)
print id(tpl[3])
tpl[3].extend([7, 8])
print tpl
print id(tpl)
print id(tpl[3])

代码结果如下,对于tpl对象,它的每个元素都是不可变的,但是tpl[3]是一个list对象。也就是说,对于这个tpl对象,id(tpl[3])是不可变的,但是tpl[3]确是可变的。

36764576
38639896
(1, 2, 3, [4, 5, 6, 7, 8])
36764576
38639896

Python的深浅拷贝

在对Python对象进行赋值的操作中,一定要注意对象的深浅拷贝,一不小心就可能踩坑了。


当使用下面的操作的时候,会产生浅拷贝的效果:


使用切片[:]操作

使用工厂函数(如list/dir/set)

使用copy模块中的copy()函数

使用copy模块里面的浅拷贝函数copy():

import copy
will = ["Will", 28, ["Python", "C#", "JavaScript"]]
wilber = copy.copy(will)
print id(will)
print will
print [id(ele) for ele in will]
print id(wilber)
print wilber
print [id(ele) for ele in wilber]
will[0] = "Wilber"
will[2].append("CSS")
print id(will)
print will
print [id(ele) for ele in will]
print id(wilber)
print wilber
print [id(ele) for ele in wilber]

使用copy模块里面的深拷贝函数deepcopy():

import copy
will = ["Will", 28, ["Python", "C#", "JavaScript"]]
wilber = copy.deepcopy(will)
print id(will)
print will
print [id(ele) for ele in will]
print id(wilber)
print wilber
print [id(ele) for ele in wilber]
will[0] = "Wilber"
will[2].append("CSS")
print id(will)
print will
print [id(ele) for ele in will]
print id(wilber)
print wilber
print [id(ele) for ele in wilber]

模块循环依赖

在Python中使用import导入模块的时候,有的时候会产生模块循环依赖,例如下面的例子,module_x模块和module_y模块相互依赖,运行module_y.py的时候就会产生错误。

# module_x.py
import module_y
     
def inc_count():
    module_y.count += 1
    print module_y.count
     
     
# module_y.py
import module_x
count = 10
def run():
    module_x.inc_count()
     
run()

       

其实,在编码的过程中就应当避免循环依赖的情况,或者代码重构的过程中消除循环依赖。


当然,上面的问题也是可以解决的,常用的解决办法就是把引用关系搞清楚,让某个模块在真正需要的时候再导入(一般放到函数里面)。


对于上面的例子,就可以把module_x.py修改为如下形式,在函数内部导入module_y:

# module_x.py
def inc_count():
    import module_y
    module_y.count += 1

   


声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python的科学计算中如何使用阵列?Python的科学计算中如何使用阵列?Apr 25, 2025 am 12:28 AM

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

您如何处理同一系统上的不同Python版本?您如何处理同一系统上的不同Python版本?Apr 25, 2025 am 12:24 AM

你可以通过使用pyenv、venv和Anaconda来管理不同的Python版本。1)使用pyenv管理多个Python版本:安装pyenv,设置全局和本地版本。2)使用venv创建虚拟环境以隔离项目依赖。3)使用Anaconda管理数据科学项目中的Python版本。4)保留系统Python用于系统级任务。通过这些工具和策略,你可以有效地管理不同版本的Python,确保项目顺利运行。

与标准Python阵列相比,使用Numpy数组的一些优点是什么?与标准Python阵列相比,使用Numpy数组的一些优点是什么?Apr 25, 2025 am 12:21 AM

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基于基于duetoc的iMplation,2)2)他们的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函数函数函数函数构成和稳定性构成和稳定性的操作,制造

阵列的同质性质如何影响性能?阵列的同质性质如何影响性能?Apr 25, 2025 am 12:13 AM

数组的同质性对性能的影响是双重的:1)同质性允许编译器优化内存访问,提高性能;2)但限制了类型多样性,可能导致效率低下。总之,选择合适的数据结构至关重要。

编写可执行python脚本的最佳实践是什么?编写可执行python脚本的最佳实践是什么?Apr 25, 2025 am 12:11 AM

到CraftCraftExecutablePythcripts,lollow TheSebestPractices:1)Addashebangline(#!/usr/usr/bin/envpython3)tomakethescriptexecutable.2)setpermissionswithchmodwithchmod xyour_script.3)

Numpy数组与使用数组模块创建的数组有何不同?Numpy数组与使用数组模块创建的数组有何不同?Apr 24, 2025 pm 03:53 PM

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,内存效率段

Numpy数组的使用与使用Python中的数组模块阵列相比如何?Numpy数组的使用与使用Python中的数组模块阵列相比如何?Apr 24, 2025 pm 03:49 PM

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

CTYPES模块与Python中的数组有何关系?CTYPES模块与Python中的数组有何关系?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。